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ABSTRACT
Over the past two decades, extensive studies have revealed that inflammation represents a major risk
factor for various human diseases. Chronic inflammatory responses predispose to pathological
progression of chronic illnesses featured with penetration of inflammatory cells, dysregulation of cellular
signaling, excessive generation of cytokines, and loss of barrier function. Hence, the suppression of
inflammation has the potential to delay, prevent, and to treat chronic diseases. Flavonoids, which are
widely distributed in humans daily diet, such as vegetables, fruits, tea and cocoa, among others, are
considered as bioactive compounds with anti-inflammatory potential. Modification of flavonoids including
hydroxylation, o-methylation, and glycosylation, can alter their metabolic features and affect mechanisms
of inflammation. Structure–activity relationships among naturally occurred flavonoids hence provide us
with a preliminary insight into their anti-inflammatory potential, not only attributing to the antioxidant
capacity, but also to modulate inflammatory mediators. The present review summarizes current
knowledge and underlies mechanisms of anti-inflammatory activities of dietary flavonoids and their
influences involved in the development of various inflammatory-related chronic diseases. In addition, the
established structure–activity relationships of phenolic compounds in this review may give an insight for
the screening of new anti-inflammatory agents from dietary materials.
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Introduction

Polyphenols are widespread secondary metabolites throughout
the plant kingdom (P�erez-Jim�enez et al., 2010). They comprise
a wide variety of molecules, characterized by a classic phenol
ring structure (i.e. several hydroxyl groups in aromatic rings).
Based on the number of phenol rings and the way they bond,
polyphenols are divided into five categories (Fig. 1) including:
flavonoids, tannins, phenolic acids, stilbenes and lignans
(D’Archivio et al., 2007; Xiao and H€ogger, 2015b), since tannins
are polymers of flavonoids and phenolic acids, Zamora-Ros
et al divided polyphenols into 4 main classes which are flavo-
noids, phenolic acids, lignans, and stilbenes (Zamora-Ros et al.,
2014). Phenolic acid and flavonoids are regarded as the most
abundant polyphenols in our daily dishes, and according to the
degree of oxidation of the oxygen heterocycle, several classes
have been divided, such as flavanols, flavonols, flavones, isofla-
vones, flavanones, anthocyanins, and proanthocyanidins
(Cao et al., 2015; Zamora-Ros et al., 2016, Fig. 1). Both flavo-
nols (or 3-hydroxy-flavones) and flavones are featured with an
unsaturated benzo-g-pyrone (A and C Rings) displaced to a

phenyl (B-ring) and as many as 7 hydroxyl groups surrounding
their skeleton. As a result of numerous investigations, flavonoid
with the position and number of hydroxyl groups to its chemi-
cal structure affected its biological activities (Xiao et al., 2013a,
2013b, 2015a, 2015b). Nowadays, polyphenols are used as a
functional ingredient in foods preparations and dietary supple-
ments. Due to their importance in food organoleptic properties
and human health, a better understanding of their structures
and biological activities would be of great help to reveal their
further potential as therapeutic agents as well as for predicting
and controlling food quality.

Inflammation is a defensive response to traumatic injuries
and moderates the activation of inflammatory immune system,
clearing pathogens and promoting tissue healing. However, an
excessive inflammatory response may exacerbate self-injury
and increase the incidence of many diseases and mortalities as
well. The inflammatory response involves multiple disorders in
signaling networks that normally regulate physiological homeo-
stasis with the abnormal involvement of activation and/or inhi-
bition of stimuli, resulting in the upregulation of cytokines,
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chemokines, adhesion molecules, enzymes, receptors, and other
proteins. Several mechanisms of action have been proposed
aiming to explain the anti-inflammatory potential of phyto-
constituents, including (Fig. 2): (1) antioxidant activity; (2)
modulation of inflammatory cells (lymphocytes, macrophages,
neutrophils, and mast cells); (3) modulation of proinflamma-
tory activities of enzymes such as phospholipase A2 (PLA2),
lipoxygenase (LOX), cyclooxygenases (COX), and nitric oxide
synthase (NOS); (4) modulation of proinflammatory mediators;
and (5) modulation of proinflammatory gene expression.

Studies showed that inflammation is associated with a wide
range of progressive diseases, such as metabolic disorder, can-
cer, Alzheimer’s and cardiovascular disease (Libby, 2007;
Kiecolt-Glaser, 2010). Because of this, many studies have sug-
gested that the prevention of various chronic diseases could be
mediated by reduction or inhibition of chronic inflammatory
mechanisms (Mestas and Ley, 2008; Garc�ıa-Lafuente et al.,
2009; Pan et al., 2009). Further, epidemiological studies provide
convincing evidence that natural dietary food components pos-
sess many beneficial biological activities. Among them,

Figure 1. Polyphenol structures and classification.

Figure 2. Several major mechanisms of anti-inflammatory action, including antioxidant activity, modulation of inflammatory cells, proinflammatory enzyme activities,
proinflammatory mediators, and proinflammatory gene expression.
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flavonoids are broadly well known for their pharmacological
and biological functions, including antiviral, anticarcinogenic,
antioxidant, antimicrobial, anti-inflammatory, antiangiogenic
and antithrombogenic effects (Garc�ıa-Lafuente et al., 2009; Kie-
colt-Glaser, 2010). Epidemiologic studies indicate that the inci-
dence of chronic diseases and cancer is negatively related to the
consumption of flavonoids enriched vegetables and fruits,
which may attribute to their anti-inflammatory activities (Men-
nen et al., 2004). Normally, polyphenols in the daily diet are
found as esters, glycosides or polymers which are not absorbed
by human body directly, hence should be hydrolyzed by enzy-
matic reactions before absorption (Xiao et al., 2015a). Polyphe-
nols could be metabolized by phase II enzymes in the cells of
the small brush border and in the liver. A large proportion of
polyphenol compounds presents several hydroxyl groups,
which are enzymatically catalyzed by methylation, glucuronida-
tion or sulfation. Polyphenol compounds are modified by these
enzymatic reactions prior reaching the liver via the portal vein
by active, passive or facilitated transportation. Some polyphe-
nols could be absorbed until 50% such as isoflavones (Zamora-
Ros et al 2014). However, only 5–10% of total polyphenol com-
pounds are absorbed in the small intestine and these com-
pounds may then undergo further extensive metabolism.
Remaining polyphenols may accumulate in the large intestine
and are subsequently excreted in the faces (Liu et al., 2017),
most of these polyphenols will be transformed by the micro-
biota and absorbed as small phenolic acids. The consumption
of polyphenol compounds may significantly be differentiated
depending on the food nature. A major challenge nowadays is
to discover the molecular basis of anti-inflammatory potential
of flavonoids. Great attention should be paid on their effects of
signaling pathways and molecular mechanisms involved in the
inflammation and the potential to reduce and/or eliminate the
burden of chronic inflammation-associated human diseases.

Bioavailability of polyphenols

It is important to point out that abundant consumption of
polyphenols in humans daily diet does not bring as much
effects as expected within the body, which may be due to a
lower intrinsic activity or poor absorption in the intestine,
high metabolism and rapid elimination. In addition, the
metabolites found in blood and target organs which result
from digestive or hepatic activity may differ from the native
substances in terms of biological activity. Extensive knowl-
edge of the bioavailability of polyphenols is, therefore,
essential to understand their health effects. Bioavailability of
polyphenols is affected not only by its ability to penetrate a
membrane, but also by maintenance of their structural
integrity. Dietary polyphenols are metabolized in the lumen
of the small intestine, and then by the liver and other
organs, where they undergo further modification (Lee,
2013). Moreover, some flavonoids (and related compounds)
are not absorbed in the small intestine, but in the large
intestine, hence a substantial structural modifications by
colonic microflora occur. In addition to structure attributes
of the nascent compound, the absorption, pharmacokinetics,
biotransformation, and the relative activities of metabolites
are critical determinants of biological effects in organisms.

In vitro data consistently demonstrate the biological efficacy
of structurally diverse flavonoids under many circumstances
of oxidative stress. However, the current understanding of
absorption and metabolism in humans is limited to a small
number of dietary flavonoids. All in vitro studies using agly-
cones or polyphenol-enriched extracts derived from plant
foods have to be revisited and revised. All flavonoids from
foods except for flavanols are found in glycosylated forms
and glycosylation influences absorption. The fate of glyco-
sides in the stomach is, however, not clear. In an interesting
study, Crespy et al. (2002) reported that absorption of some
flavonoids such as quercetin and daidzein is in stomach,
but not for their glycosides. The aglycones are generated
from their glycosides through bacterial hydrolysis with the
release of sugar moiety, and it is widely believed that a lim-
ited absorption of some flavonoids like quercetin occurs
only in the large intestine (Gee et al., 1998). Only aglycones
and some glucosides can be absorbed in the small intestine,
whereas polyphenols linked to a rhamnose moiety must
reach the colon and be hydrolyzed by rhamnosidases of the
microflora before absorption (Manach et al., 1995; Hollman
et al., 1997). This may be similar for polyphenols linked to
arabinose or xylose, even though this question has not been
fully studied. Since absorption does not usually occur in the
colon with a smaller exchange area and a lower density of
transport systems compared to the small intestine, glyco-
sides with rhamnose such as quercetin-3-rhamnoside (com-
pound 49) are absorbed less rapidly and less efficiently than
aglycones and glucosides. More direct evidences on the bio-
availability of phenolic compounds have been given by
experimental data measuring their concentrations in plasma
and urine after the ingestion. For example, the maximum
absorption occurs at 0.5–0.7 h after ingestion of quercetin
40-glucoside by human but it requires 6–9 h to reach the
maximum absorption for the same quantity of rutin (Graefe
et al., 2001). Bioavailability and absorption kinetics also sig-
nificantly vary in different sources, where a major difference
among these sources is the type of glycoside (Hollman
et al., 1997). Quercetin (from onions) with only glucosides
is rapidly absorbed whereas the absorption of pure querce-
tin-3-rutinoside (from tea) shows a conspicuous delay. The
absorption rates of a variety of glycosides from apples are
intermediate. These results conform a predominant role of
the sugar moiety in the bioavailability and absorption of
dietary quercetin in the human body (Hollman et al., 1997).
In the case of quercetin glucosides, absorption occurs in the
small intestine and the efficiency of absorption is higher
than that of aglycone (Hollman et al., 1995). Besides, the
results imply the role of the colon in the absorption of
quercetin rutinoside. The sugar moiety has a predominant
effect on the absorption and plasma levels of quercetin. The
underlying mechanism may partly elucidate that glucosyla-
tion enhances quercetin absorption. Hollman et al. (1995)
suggested that glucosides can be transported into entero-
cytes by the sodium-dependent glucose transporter SGLT1.
They can then be hydrolyzed at the inside of cells by a
cytosolic-glucosidase (Day et al., 1998). Isoflavone glyco-
sides present in soya products can also be deglycosylated by
b-glucosidases from the human small intestine (Day et al.,
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1998). However, the effect of glucosylation on absorption is
less clear for isoflavones than for quercetin. Aglycones pres-
ent in fermented soya products seem to be better absorbed
than the glucosides ingested from soybeans (Hutchins et al.,
1995). With the oral administration of pure daidzein, genis-
tein, or their corresponding 7-glucosides to healthy volun-
teers, Setchell et al. (2001) showed that the systemic
bioavailability of genistein was much greater than that of
daidzein and the bioavailability of these isoflavones was
greater when ingested as b-glycosides rather than aglycones.
However, in another human study, peak of plasma concen-
trations was significantly higher after aglycone ingestion
than glucoside ingestion, which was observed with either
low or high single doses or long-term intakes (Izumi et al.,
2000). In addition, hydrolysis of isoflavone glycosides into
aglycones in a soy drink does not change the bioavailability
of the isoflavones in humans (Izumi et al., 2000). Analysis
of ileal fluid collected from ileostomists after the ingestion
of various foodstuffs indicate that even when dietary flavo-
noids are absorbed in the small intestine, substantial quanti-
ties none-the-less pass from the small to the large intestine
(Jaganath et al., 2006) where the colonic microbiota will
cleave conjugating moieties and the resultant aglycones will
undergo ring fission leading to the production of smaller
molecules, including phenolic acids and hydroxycinnamates.
These can be absorbed and may be subjected to phase II
metabolism in the liver before being excreted in urine in
substantial quantities that, in most instances, are well in
excess of the flavonoid metabolites that enter the circulatory
system via the small intestine (Stalmach et al., 2010). The
intestinal absorption of polyphenols can be high. However,
the plasma concentration of any individual molecule rarely
exceeds 1 mM after the consumption of 10–100 mg of a sin-
gle compound. Measurement of the plasma antioxidant
capacity suggests that more phenolic compounds are pres-
ent, largely in the form of unknown metabolites, produced
either in our tissues or by the colonic microflora. It will be
important to learn more about these metabolites, particu-
larly because of their potent biological activity. Biologists
should focus less on the parent compounds as they are
ingested and more on the biological activities of the

metabolites present in our tissues, and in particular on the
conjugated analogues.

O-methylation

O-Methylation is commonly used in the synthesis of sec-
ondary metabolites in plants and micro-organisms, by
which methyl groups are transferred to hydroxyl groups of
the recipient compound in order to increase the hydropho-
bicity of the latter molecule (Kim et al., 2006a, 2006b).
After several O-methylation reactions, flavonoid derivatives
from plants broaden the repertoires against environmental
stimuli and play a role in plant growth and development
(Frick et al., 2001). Tewtrakul et al. (2009) evaluated the
compounds isolated from the rhizomes of Kaempferia parvi-
flora Wall. ex Baker (Zingiberaceae) by examining their
inhibitory activities against nitric oxide (NO) production.
Results showed that 5-hydroxy-3,7,30,40-tetramethoxyflavone
(compound 3) expressed the highest NO inhibitory activity
with an IC50 of 16.1 mM, followed by 5-hydroxy-7,40-dime-
thoxyflavone (compound 5) (IC50 D 24.5 mM) and 5-
hydroxy-3,7,40-trimethoxyflavone (compound 4) (IC50 D
30.6 mM), while other compounds showed moderate to
weak potential. The NO inhibition activity of compound 5
(IC50 D 16.1 mM) was 3 times weaker than that of caffeic
acid phenethylester (an NF-kB inhibitor, IC50 D 5.6 mM),
but 4 times higher than L-nitroarginine (a NOS inhibitor,
IC50 D 61.8 mM). The structure–activity trends of K. parvi-
flora upon NO inhibition can be summarized as follows: 40-
methoxyl group attached to B-ring increased the activity, as
shown in compound 4 (IC50 D 24.5 mM) versus compound
2 (IC50 D 64.3 mM); and nearby methoxylation at positions
30 and 40 brought a higher activity as observed in com-
pound 5 (IC50 D 16.1 mM) versus compound 3 (IC50 D
30.6 mM) (Tewtrakul et al., 2009). The extract from Gera-
nium robertianum L. (Geraniaceae) bark is widely used as a
traditional Peruvian medicine for treatment of different
malignancies (Elmadfa and Wagner, 2008), arthritic pain
and gastritis, which activities are likely due to its anti-
inflammatory and antioxidant properties by inhibiting
tumor necrosis factor (TNF)-a production and

Table 1. In vitro anti-inflammatory actions and pathway of some major aglycone in dietary foods.

Example Action Pathway References

Apigenin #NO, "NF-kB: "IKK, #IkB, "MAPKs,
#proteasome activity, #COX-2, #PGE2,
#IL-6

p65 translocation to the nucleus, DNA binding transcriptional
activity; p38 MAPK, ERK and JNK enzyme activity; VCAM-1,
ICAM-1 expression

Liang et al., 1999; Chen et al., 2004; Choi
et al., 2004; Chen et al., 2005; van
Meeteren et al., 2004

Luteolin #NO, "NF-kB: "IKK, #IkB, "MAPKs,
#proteasome activity, #COX-2, #PGE2,
#IL-6,

TNF-a release, p38 MAPK and ERK pathways, VCAM-1, ICAM-1 and
E-selectin expression, cJun phosphorylation cJun and cFos
mRNA levels DNA binding transcriptional activity

Choi et al., 2004; Hirano et al., 2006
Byun et al., 2010; Shichijo et al., 2003

Quercetin #NO, "NF-kB: "IKK, #IkB, "MAPKs,
#proteasome activity, #COX-2, #PGE2,
#IL-6, #IL-8, #IL-b, #CXCL2, #CCL5

TNF-a release, p38 MAPK and ERK pathways, VCAM-1, ICAM-1 and
E-selectin expression, cJun phosphorylation cJun and cFos
mRNA levels DNA binding transcriptional activity

Comalada et al., 2005; H€am€al€ainen
et al., 2011; Min et al., 2007

Chrysin "NF-kB, #IkB DNA binding transcriptional activity Hougee et al., 2005
Kaempferol #NO, "NF-kB: "IKK, #IkB, "MAPKs,

#proteasome activity, #COX-2, #PGE2,
#IL-6,

DNA binding transcriptional activity, p38 MAPK and ERK pathways H€am€al€ainen et al., 2011; Garc�ıa-
Mediavilla et al., 2007

Myricetin JAK1/STAT 3 Syk activity Wang et al., 2010;
Catechin "NF-kB, "IKK, #COX-2 P50 translocation to the nucleus, DNA binding transcriptional

activity, TNF-a release
Suzuki et al., 2007; Hirao et al., 2010
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prostaglandin modulation (Piscoya et al., 2001; Sandoval
et al., 2002). Three flavonoids have been identified in G.
robertianum extract: 30,40-dimethoxyflavone (compound 9),
homoeriodictyol (compound 10) and kaempferol (com-
pound 11). The former 2 compounds both have a C2 D C3
double bond and a 4-oxo group; nevertheless, the orthocate-
chol group has one or two methylated OH groups that may
lead to the decreased antioxidant activity (Cao et al., 1997).
Compound 11, though only one OH group is stuck to the
B-ring, is known as a potent antioxidant because it exhibits
the C2 D C3 double bond and the 5-OH and 3-OH groups
with the 4-oxo group on the C-ring (Amaral et al., 2009).
High antioxidant potential of these compounds might jus-
tify their effectiveness for inflammatory diseases treatment
and certain types of neoplasms, as far as the inflammation
is a trigger for their development. Chrysin (5,7-dihydroxy-
flavone, compound 12) is a natural flavonoid abundantly
found in blue passion flower, propolis, fruits, and vegetables
(Sobocanec et al., 2006). Previous studies highlighted
chrysin (Table 1) an anti-inflammatory molecule by inhibit-
ing several cytokines, such as COX-2, prostaglandin E2
(PGE2), and NO (Ha et al., 2010; Harasstani et al., 2010).
Although chrysin showed many beneficial effects in in vitro
studies, its absorption after oral administration either in
animals or humans is low, because of rapid metabolism in
small intestine and liver (Walle et al., 1999). Methylation,
glucuronidation, sulfation, and ring-fission metabolism rep-
resent the major metabolic pathways for flavonoids. How-
ever, O-methylation would eventually make flavonoids
metabolically more stable and also would increase their bio-
availability as well as a higher tissue distribution than
unmethylated forms (Wen and Walle, 2006; Walle et al.,
2007). For instance, 5,7-dimethoxyflavone (compound 13)
and 5,7,4-trimethoxyflavone (compound 14) both were
found ten times more effective in inhibiting the prolifera-
tion of human oral squamous SCC-9 cancer cell line (IC50

values 5–8 mM) than the corresponding unmethylated ana-
logs apigenin (compound 15) and chrysin (Walle et al.,
2007). In particular, O-methylation ensures a superior anti-
cancer activity as compared with the corresponding hydrox-
ylated derivatives, since it is more resistant to the hepatic
metabolism and shows a higher intestinal absorption (Ber-
nini et al., 2011). As it is known, very limited studies have
been dedicated to the oral bioavailability of other polyme-
thoxyflavones or methoxyflavones. One related study
administered nobiletin (compound 16, polymethoxyflavo-
noid) and unmethylated luteolin (compound 17, 5,7,304
0-tetrahydroxyflavone) to rats at a dosage of 25 mg/kg,
which found that significant amounts of nobiletin were
detected in the whole liver and kidney specimens, but accu-
mulation of luteolin was in traces (Murakami et al., 2002).
Another polymethoxyflavone, tangeretin (compound 18,
5,6,7,8,40-pentamethoxyflavone) was blended to hamsters’
diet with 1% dosage and administered for 35 days, and uri-
nary excretion of animal metabolites indicated that a con-
siderable amount of tangeretin was absorbed in the
intestine. However, changeable tangeretin was detected in
plasma (Kurowska and Manthey, 2004). Several methylated
flavones, involving compound 13, 7-methoxyflavone

(compound 19), and 7,40-dimethoxyflavone (compound 20),
showed higher intestinal absorption and metabolic resis-
tance than their unmethylated analogs (Ta and Walle,
2007). Recently, Sae-Wong et al. (2011) have showed that
compound 13, trimethylapigenin (compound 21), and tetra-
methylluteolin (compound 22) significantly inhibited NO
production in lipopolysaccharide (LPS)-activated RAW264.7
macrophage cells (IC50 values of 5.1, 4.6, and 8.7 mg/mL,
respectively); whilst 3,5,7-trimethoxyflavone (compound 23),
3,7,40-trimethylkaempferol (compound 24), and ayanin
(compound 25) possessed moderate to mild activity (IC50 D
44–60 mg/mL). In an earlier study, Matsuda et al. (2003)
checked the effects of 73 different flavonoids on NO pro-
duction in LPS-activated peritoneal macrophages from
mouse and clarified structure–activity relationship of flavo-
noids for the inhibition of NO production: (a) strongly
active flavonoids possessed 5,7-dihydroxyl group and C2-C3
double bond; (b) kaempferol (compound 11) < quercetin
(compound 31) < luteolin (compound 17), tamarixetin
(compound 28) < ombuine (compound 29) < pilloin (com-
pound 32) (Kim et al., 1999a, 1999b; You et al., 1999). Fla-
vonoids exhibit the anti-inflammatory activity partially
related to their inherent antioxidant capacity. The scaveng-
ing ability of flavonoids is due to the existence of double
bond between carbons 2 and 3 in the C-ring of flavonoid
skeleton (Bonfili et al., 2008). Methylation of the 3-hydroxyl
group also exhibited a higher inhibition against NO produc-
tion such as: rhamnetin (compound 27) < lzalpinin (com-
pound 26), ombuine (compound 29) < ayanin (compound
25) (Soobrattee et al., 2005). Similarly, methylation of the
5-hydroxyl group enhanced the activity (Plochmann et al.,
2007): compound 33 < compound 34 and 7-penta-O-
methyl quercetin (compound 30); and methylation of the
40-hydroxyl group also improved the activity (Mastuda
et al., 2002): luteolin (compound 17) < diosmetin (compound
35), and quercetin (compound 31) < tamarixetin (compound
28). In addition, Mastuda et al. (2003) reported that the fla-
vones with the 5-hydroxyl moiety exhibited a stronger NO
inhibitory effect than those without it, as for example: 7-
hydroxyflavone < chrysin, 40,7-dihydroxyflavone < apigenin,
and 30,40,7-trihydroxyflavone < luteolin (Table 1). However,
flavonols and flavones with the 40-hydroxyl group exhibited
stronger activities than those with 30,40-dihydroxyl moiety
and lack of the hydroxyl group at the B ring (Mastuda et al.,
2003). Flavonols having the 30,40-dihydroxyl group showed
higher activities than those having the 30,40,50-trihydroxyl
group: compound 37 < tamarixetin (compound 27), myrice-
tin (compound 36) < quercetin (compound 31), compound
38 < rhamnetin (compound 27), and compound 39 < luteo-
lin. Comparison between flavones and flavanones suggested
that the C2-C3 double bond moiety improved the activity:
flavanone < flavone, liquiritigenin (compound 43) < com-
pound 12, and eriodictyol (compound 45) < compound 17.
The 40-or 30,40-vicinal substitutions and 8-methoxyl group
positively enhanced inhibitory activity, and the 20,40-hydroxyl
substitution abolished the inhibitory activity. However, the 3-
hydroxyl moiety decreased the activity. Besides, potent NO
inhibitors were discovered to inhibit iNOS induction with
no inhibitory activity toward iNOS enzymatic activity
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(Sae-Wong et al., 2011). The inhibition of enzymes and NO
production involved in the production of prostaglandins and
leukotrienes, is also correlated to the double bond between
C2 and C3 (Kim et al., 2004). In a similar study, the presence

of the C2 D C3 double bond in C-ring is required for the
optimal intercellular adhesion molecule-1 (ICAM-1) expres-
sion inhibition (Benavente-Garcia et al., 2008). The potential
methylation sites of flavonoids affecting the anti-

Figure 3. The structure of methylated flavonoids.
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inflammatory effect are shown Figure 3. Evidence presented
above indicated that O-methylation of flavonoids could
increase their bioavailability as well as to improve their che-
mopreventive properties

Hydroxylation

The hydroxylation of A-ring of flavonoids, especially for 5-
and 7-hydroxylations, is beneficial for antioxidant activity
(Bonfili et al., 2008), inhibition of NO production
(Kim et al., 1999a, 1999b) and expression of cell adhesion
molecules such as ICAM-1 (Teng and Chen, 2016). Ring
hydroxylation has been reported to be critical in improving
COX-2 inhibition in A549 cell line (Tjendraputra et al.,
2001). In addition, their potency is also found to be associ-
ated with the form and number of hydroxylations on the
A/B-ring (Pelzer et al., 1998); as shown in Table 2, the 5-
and 7-hydroxylations on the A-ring and 40-hydroxylation
on the B-ring are the most frequently occurring. The
hydroxyl group at position 3 on the C-ring slightly blocks
the ICAM-1 expression (Chen et al., 2004). The inhibition
of TNF-a production is likely to require a structure of 5-
and 7-hydroxyflavones which is prevalent in apigenin and
luteolin (Ueda et al., 2004). In addition, 8-methoxyl group
on the A-ring favorably influences the inhibition of NO
production (Kim et al., 1999a, 1999b). Subclasses of flavo-
noids including flavonols, flavanones, flavones, and isofla-
vones were systematically investigated for PGE2 production
inhibition (Takano-Ishikawa et al., 2006). Results suggest
that the 4-oxo on the C-ring is crucial for a higher inhibi-
tory effect and the C2-C3 double-bond improves the activ-
ity. It has been further revealed that the C2-C3 double
bond reduction led to a decrease in the inhibitory activity

of the COX pathway, essential for PGE2 production (Land-
olfi et al., 1984). The inhibitory activities of flavonoids seem
to be determined by the number and position of hydroxyl
residues. Among the checked inhibitory flavonoids, the
presence of 5- and 7-OH got higher activities than those
with only 7- or without 5- and 7-OH (Burda and Oleszek,
2001; Yoon et al., 2013). Morin (3,5,7,2�,4�-pentahydroxyfla-
vone), administered orally at a dose 25 mg/kg daily, has
been reported to exert inhibitory effect against the level of
interleukin (IL)-1b in chronic experimental colitis in rats
and significant decrease was noticed after 3 weeks (Galvez
et al., 2001). Harasstani et al. (2010) reported that Morin in
vitro studies inhibits the TNF-a and IL-4 levels in IgE-
primed RBL-2H3 cells (Harasstani et al., 2010). On the
other hand, Morin suppressed the production of NO and
PGE2 in LPS-stimulated RAW 264.7 cells with IC50 values
equal to 17.47 and 44.85 mM, respectively. It should be
noticed that quercetin (3,30,40,5,7-pentahydroxyflavone dihy-
drate), the most common flavonoid compound synthesized
in plant, in vitro study, at a dose of 100 mM, significantly
inhibited the production of PGE2 in rheumatoid synovial
fibroblast (Sung et al., 2012). As regard to the possible
inhibitory mechanism, one conceivable proposal is that sev-
eral flavonoids like quercetin potently suppress protein tyro-
sine kinase. The results on flavonols and flavone showed
that compounds without a –OH residue on the B-ring were
more effective than those with 30- and 40-OH, but more
than two hydroxyl residues on the B-ring caused a loss of
inhibitory activity. In isoflavones, compounds with 5-OH
residue were more effective than those without 5-OH. The
hydrophobicity of the flavonoids which impacts its perme-
ability is decided by the coordination of sugars as well as
the hydroxyl residues number.

Table 2. Hydroxylation of flavonoids for inhibitory effect on PGE2 biosynthesis in rat peritoneal macrophage stimulated by LPS.

Name Example Site Effect References

Flavonols 3-Hydroxyflavone !7-Hydroxyflavonol !3, 7 "� Burda and Oleszek, 2001
!Galangin !3, 5, 7 " Xia et al., 2013
!Kaempferol !3, 5, 7, 40 "� Yoon et al., 2013
!Fisetin !3, 7, 30 , 40 #�� Suh et al., 2009
!Wogonin !5, 7 # Suh et al., 2009
!Morin !3, 5, 7, 20 , 40 #�� Chen et al., 2012; Harasstani et al., 2010
!Quercetin !3, 5, 7, 30 , 40 " Sung et al., 2012
!Isorhamnetin !3, 5, 7, 40 #�� Takano-Ishikawa et al., 2001
!Robinetin !3,7, 30 , 40 , 50 #�� Takano-Ishikawa et al., 2001
!Quercetagetin !3, 5, 6, 7, 30 , 40 , 50 #�� Ferrandiz and Alcaraz, 1991
!Myricetin !3, 5, 7, 30 , 40 , 50 #�� Medeiros et al., 2008

Flavanones Naringenin !Eriodictyol !5,7,30 ,40 " Folmer et al., 2012
!Hesperetin !5,7,30 #�� Do et al., 2014
!Hesperidin !5,30 #�� Sakata et al., 2003

Flavones 5-Hydroxyflavone !7-Hydroxyflavone !7 " Takano-Ishikawa et al., 2001
!Chrysin !5, 7 " Saadawi et al., 2012
!Baicalein !5, 6, 7 " Nakahata et al., 1998
!Apigenin !5, 7, 40 " Suou et al., 2011
!7,30 ,40-Trihydroxyflavone !7, 30 , 4 #� Takano-Ishikawa et al., 2001
!Luteolin !5, 7, 30 , 40 #�� Wang et al., 2007

Isoflavones Daidzein !Daizin 7,40!40 #�� Takano-Ishikawa et al., 2001
!Genistin !5, 40 "� H€am€al€ainen et al., 2011
!Genistein !5, 7, 40 #�� Horia and Watkins, 2006

"indicated increased activity; #indicated decreased activity;
�significant difference at p < 0.05;
��significant difference at p < 0.01

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 7

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

45
 0

9 
Ja

nu
ar

y 
20

18
 



C2DC3 double bond in combination with 3-OH

In fact, for most flavonoids, due to the presence of C2DC3 dou-
ble bond, the OH-linked to the C3 position can easily occur
monoelectronic oxidation to produce a hydroxyl radical, and
unpaired electrons can delocalize in C2 and B ring. In
numerous studies, the role of the C2DC3 double bond and
3-OH group were discussed. Most studies acknowledged the
importance of C2DC3 double bond since it contributes to
the antioxidant activity of flavonoids (Robak and Gryglew-
ski, 1987; Ratty and Das, 1988; Cholbi et al., 1991).
Recently, Gregoris and Stevanato (2010) found that radical
scavenging activities of galangin (OH at C3) and apigenin
(OH at C40) were associated with unpaired electrons in dif-
ferent positions on B aromatic ring and the galangin with
OH attached at C3 expressed a much higher antioxidant
activity than apigenin with OH attached at C40. According
to previous studies, a general agreement was achieved that
the presence of OH groups with a preference for a catechol
moiety in ring B is crucial, conferring a high stability to the
aroxyl radical via expanded electron delocalization (Bors
et al., 1990b) or hydrogen bonding (Bors et al., 1990a). Nar-
ingenin without the C2 D C3 double bond showed a low
antioxidant capacity, but a high antioxidant capacity was
found in kaempferol with the double bond in C2 D C3 and
the hydroxyl group in C3 (Gregoris and Stevanato, 2010).
This is probably caused by a combination of the C2 D C3
double bond with the 3-OH, which also turns flavonols and
flavones into better scavengers than the flavanols and flava-
nones. Similarly, Burda and Oleszek (2001) looked for a
link between the structure of 42 flavonoids and their antiox-
idant and antiradical activities; and results showed that only
flavonols with a free hydroxyl group on C3 position pre-
sented a high inhibitory activity to b-carotene oxidation,
and that antiradical activity depended on the presence of
C2 D C3 double bond and free hydroxyls on C3. Despite
both C3 and C40 radicals can delocalize the unpaired elec-
tron on the C2 D C3 double bond and the aromatic ring,
antioxidant properties are quite different. Rigobello et al.
(2004) explained this phenomenon as the steric hindrance
of C3 hydroxyl group stabilized the radicals. Similar conclu-
sion was drew for artepillin C, which consists of a phenolic
structure with a strongly obstructed hydroxyl group (Kuma-
zawa et al., 2004). It seems that the C2DC3 double bond is
more important than the keto group for the antioxidant
properties. In fact, no reasonable formulas for resonance
limit involve the keto group in the formation of C3 phe-
noxyl radical. Kumazawa et al. (2004) found low 2,2-
diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging
activity for pinobanksin which contains a hydroxyl group in
C3 and the keto group in C4, but not the C2DC3 double
bond. Hydroxyl groups placing into the molecular structure
affect antioxidant properties of the molecule more than the
generic number of the hydroxyl groups (Wu et al., 2007). It
is possible to state that in benzenic structures, the presence
of two hydroxyl groups to ring position confers elevated
antioxidant properties to its molecule, such as a hydroxyl
group in C3 connected with the C2DC3 double bond conju-
gated to the aromatic ring in the flavonoid structure. High

inhibitory effect against aldose reductases is attributed to
the molecules with a C2DC3 double bond, which allows the
formation of a high p-conjugation for linking B and C rings
(Xiao et al., 2015a). Moreover, isoflavones do not form H-
bonds within the catalytic residues of human salivary
a-amylase, which is a likely consequence of the ring B posi-
tion; in isoflavones, as contrary to the other flavonoids, the
B-ring is attached to carbon C3 rather than C2 of ring C
(Piparo et al., 2008). Hydrogenation of the C2 D C3 double
bond for many flavonoids weakens the binding affinity for
a-amylase by 2–4 orders of magnitude (Xu et al., 2016).
Tadera et al. (2006) reported that the inhibitory effect of
apigenin with an inhibitory percentage of 21% was stronger
than naringenin (5%) against porcine pancreatic a-amylase.
In fact, flavonols with C2 D C3 double bond show a planar
structure of sp2, and then trigonal planar, the electronic
configurations of all the carbon atoms. The oxygen atom,
alone, does not alter this planar configuration. Planarity of
the C ring in flavonoids could play a very important role in
binding interaction with proteins, as the molecules with sat-
urated C2 D C3 bonds (flavanones and certain others) per-
mit increased twist of the B ring with reference to the C
ring. The molecules with near-planar structure easily enter
the hydrophobic pockets in enzymes. The missing electrons
lead to weaker p–p interactions with the indole ring of
Trp59, eventually, leading to a reduced inhibitory activity of
these compounds toward human salivary a-amylase. Fur-
thermore, flavonoids with a C2 D C3 double bond are
more effective than the corresponding homologues (com-
parison of flavone with flavanone, chrysin with pinocem-
brin, and quercetin with eriodictyol) on ethoxyresorufin O-
deethylase and O-debenzylase (Siess et al., 1995). Similar
results were obtained by analyzing other enzyme inhibitory
effects including: a-glucosidases (Xiao et al., 2015a), angio-
tensin-converting enzyme (Guerrero et al., 2012), and other
enzymes implicated in carcinogen activation (Weidmann,
2012). In summary, previous study indicated that saturation
of the C2 D C3 double bond decreased enzyme inhibitions.
It has been reported that reduction of the C2 D C3 double
bond leads to reduced suppressions of the COX pathway
and PGE2 production (Landolfi et al., 1984). In another
study, a similar tendency was observed for the inhibition of
COX-1 and COX-2 (Takano-Ishikawa et al., 2006). The C2
D C3 double bond in conjugation with a 4-oxo group plays
a very important role for the affinity of common human
plasma proteins. In addition, naringenin (flavanone), which
lacks the C2 D C3 double bond of apigenin, does not
inhibit insulin-stimulated glucose uptake, suggesting that
the C2 D C3 double bond also plays an important role in
insulin-stimulated glucose uptake in MC3T3-G2/PA6 adi-
pose cells (Nomura et al., 2008). Flavanols, (C)- and
(¡)-catechin, which do not possess a C2 D C3 double
bond, don’t show any effect on glucose uptake. The pres-
ence of a C2 D C3 double bond in flavones and flavonols is
suggested to be critical for inhibitory activity against protein
kinases, including phosphoinositide 3-kinase (PI3K), phos-
pho kinase C (PKC), myosin light chain kinase and G type
casein kinase (Jinsart et al., 1991; Agullo et al., 1997; Chen
and Kang, 2013). Conclusively, the results suggest that C2
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D C3 double bond in dietary phenolic compounds signifi-
cantly enhances their various biological effects. Understand-
ing the structure–activity relationship will ultimately
contribute to a better comprehension of the variable results
of epidemiological studies in different populations, and will
allow us to make a more qualified statement about the
impact of food on health. The C2 D C3 double bond is,
therefore, a promising modification approach to provide
optimum biologic activity of flavonoids and allow novel
applications.

Glycosylation

As mentioned above, most flavonoids in plants appear as
glycosides, and some are presented in aglycone (lack of
sugar moiety). At least eight different monosaccharides or
their combined forms (di- or trisaccharides) can bind to
different hydroxyl groups of the flavonoid aglycone (Wil-
liams and Harborne, 1986; Chen and Kang, 2014a; Chen
et al., 2014b). A great number of flavonoids are derived
from different combinations of flavonoid aglycones and
these sugars (Figure 4). The glycosides usually include b-d-
glucopyranosyl (Glc), b-d-glucopyranosiduronic acid
(GlcA), a-l-rhamnopyranosyl (Rha), neohesperodosyl (Neo),
or Glc (6!1) Rha (Rut) (Xiao et al., 2015a). Glycosylation
generally occurs in the metabolism of flavonoids, and flavo-
noid glycosides have been shown to possess higher-hydro-
philic properties than aglycones form (Lin et al., 2005;
Chen et al., 2016). Kim et al. (2009) reported that flavonoid
glycosides were metabolized to aglycones by human intesti-
nal microflora, producing a-rhamnosidase, exo-b-glucosi-
dase, endo-b-glucosidase, and b-glucuronidase. Accordingly,
rutin, hesperidin, naringin, and poncirin were transformed
to their respective aglycones with arhamnosidase and b-glu-
cosidase produced by intestinal bacteria (Kim et al., 1999a,
1999b). The in vitro hydrolytic capability of a-rhamnosi-
dases on flavonoid glycosides varied with pH and tempera-
ture, and indicated compound properties in a reaction
buffer (Hollman and Katan, 1998). Flavonoid glycosides
(rutin and quercitrin) exhibited a significant NO inhibition
in vivo but were ineffective in LPS-stimulated macrophages
in vitro; while flavonoid aglycone (quercetin) showed NO
inhibitory effect both in vivo and in vitro (Shen et al.,
2002). Taken together, these data indicate that in vivo meta-
bolic activity to convert flavonoid glycosides into aglycones
may be necessary for their NO inhibitory activities. How-
ever, the direct evidences are still insufficient.

O-glycosylation

Flavone O-glycosides are composed of aglycone moieties with
one or more sugars attached via b-linkage. These compounds
may be modified by endogenous enzymes like malonylesterases
(conversion from malonylapiin to apiin) (Shanmugam et al.,
2008). For many flavonoid glucosides, b-glucosidase activity in
brush border of small intestine is sufficient to hydrolyze the
aryl glycosidic bond and allow the aglycone absorption. Intesti-
nal b-glucosidase, however, cannot hydrolyze oligosaccharide
moieties. Previous studies using fluorescent microscopy or
HPLC analysis showed that flavonol aglycones, rather than gly-
cosides, are transported into hepatocytes to finally accumulate
in the nucleus (Kanazawa et al., 2006). Although intestinal bac-
teria can cleave these bonds, absorption is reduced. As long as
dietary flavones are ingested predominantly as glycosides, their
biological effect are depended on how and where they are
hydrolyzed, absorbed, metabolized, transported, and excreted.
Flavone glycosides in celery present as apiosylglucosides and
might also be resistant to brush border b-glucosidase action.

The glycosylation also plays an important role in biological
action of flavonoids (Xiao, 2016). For instance, flavonoid agly-
cones are more potent than corresponding glycosides (diosme-
tin vs. diosmin) (Benavente-Garcia et al., 2008). The flavonoid
glycosides may not penetrate the cell membrane due to their
hydrophilicity, or there might be steric impediment due to their
large glycosyl residues (Kim et al., 1999a, 1999b). However, glu-
coside acetylation may facilitate the availability of the flavo-
noids to suppress TNF-a expression (Shie et al., 2010). Finally,
prenylated flavonoids that inhibit COX-2 activity all have a C3
isoprenyl residue in their structures (Kim et al., 2004). Substan-
tial quantities of quercetin-3,40-di-O-glucoside (compound 48)
and quercetin 40-O-glucoside are discovered in onions (Rhodes
and Price, 1996) along with lower levels of quercetin 3-O-glu-
coside as reported by Gee et al. (1998). Isoquercitrin (quercetin
3-glucoside, compound 46) showed higher anti-inflammatory
effect in their glycosides than the respective aglycone (querce-
tin) in a murine model of asthma (Rogerio et al., 2007). Previ-
ous studies also showed that quercetin 3-O-rhamnoside
(compound 49) from Houttuynia cordata possessed a strong
anti-inflammatory capacity through the inhibition of epithelial
cell activation during chronic intestinal inflammation. Appar-
ently, quercetin 3-O-galactopyranoside (compound 53), quer-
cetin 3-O-arabinopyranoside (compound 50), quercetin 3-O-
rhamnopyranoside (compound 52), myrisetin 3-O-glucoside
(compound 54) were confirmed as potential anti-inflammatory
agents in carrageenan-induced rat paw edema (Mothana et al.,
2012).

Moreover, a number of studies have proved that epigalloca-
techin gallate (EGCG, compound 55) inhibits LPS-induced
microglial activation and protects against inflammation-medi-
ated dopaminergic neuronal injury (Li et al., 2004; Cavet et al.,
2011; Zhong et al., 2012). Theaflavins from black tea have been
suggested to reduce oxidative stress and inflammation by their
radical scavenging ability and downregulation of pro-inflam-
matory mediators both in vitro and in vivo (Aneja et al., 2004;
Ukil et al., 2006; Gosslau et al., 2011). Coincidentally, this com-
pound was found to show a strong anti-inflammatory effect by
refraining TNF-a-mediated activation of IkB kinase and

Figure 4. The potential methylation sites of flavonoids affecting the anti-inflam-
matory effect. The green up arrows represent increasing the effect.
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subsequent activation of the IkB-a/NF-kB pathway (Aneja
et al., 2004). Results of a study by Lin et al. (2005) provided a
scientific evidence suggesting that rutinose at C7 is a negative
moiety in flavonoid since it inhibited LPS-induced NO produc-
tion and heme oxygenase-1, reducing LPS-induced iNOS and
NO production. Hesperetin (5,7,30-trihydroxy-40-methoxyfla-
vanone) and naringenin (5,7,40-trihydroxy flavanone), and cor-
responding glycones, hesperidin (compound 62, 5,7,30-
trihydroxy-40-methoxy-flavanone 7-O-rhamnoglucoside) and
naringin (compound 64, 5,7,40-trihydroxy flavanone 7-O-
rhamno glucoside), were used to evaluate the importance of
rutinose at C7 for the inhibitory effects of flavonoids on LPS-
induced NO production in macrophages. Results showed that
rutinoside at C7 is critical for the anti-inflammatory activities
of flavonoids (Lin et al., 2005).

C-glycosilation

Most of the flavonoid glycosides are O-glycosides; however,
sugars can also be bound to a flavonoid moiety through a C-C
bond, hence developing C-glycosides (Figure 5). Until now,
there is no systematic study available to explain how the loca-
tion of C-glycosylation influences on the biological activities of
flavonoids (Xiao et al., 2016). To investigate the anti-inflamma-
tory effect of C-glycosylation at different positions of a given
flavonoid, the structure–activity relationship and a pair of iso-
meric C-glycosylated derivatives were employed. Yoo et al.

(2014) determined the effects of C-glycosylflavone isomer pairs
(orientin, isoorientin, vitexin and isovitexin) on the expression
of cellular adhesion molecules (CAMs) in high mobility group
box-1 (HMGB1)-stimulated endothelial cells.

Structure–activity relationship revealed the effect of an
existence of 30-OH functional group in the B-ring and a
position of C-glucose on the chemical structure of flavone
(as discussed in section Hydroxylation) as shown in (Figure
6). Orientin and isoorientin with 30-OH group showed activ-
ities against HMGB1 and its receptors while vitexin and iso-
vitexin without 30-OH group showed no effect, indicating
that the existence of 30-OH group of flavone plays a pivotal
role in anti-inflammatory activities (Yoo et al. 2014). Fur-
thermore, orientin with 8-C-glucoside was more active than
isoorientin with 6-C-glucoside in anti-inflammatory activities
both in vitro and in vivo (Choi et al. 2014; Yoo et al. 2014).
Orientin, which has been used as an anti-inflammatory herb
in China, regulates the key molecules involved in inflamma-
tion. For example, orientin (at a tested doses 1–40 mM) sup-
pressed the production of IL-6 and TNF-a in LPS-induced
vascular inflammatory response, which is relevant to NF-kB
and extracellular signal-regulated kinase (ERK) pathway sup-
pression (Lee et al., 2014). Ku et al. (2014) showed that a
high glucose-induced vascular inflammation is attenuated by
orientin (5–50 mM) through the regulation of MCP-1, IL-8,
reactive oxygen species (ROS) and NF-kB. Liu et al. (2012)
investigated inhibitory effects of three flavonoid-C-glycosides

Figure 5. Representative natural glycosylation flavonoid and their dietary sources.
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isolated from fenugreek spice on COX-1 and COX-2
enzymes. Among them, the flavone 8-C-glycoside (vitexin)
showed the best COX-2 enzyme inhibition as compared to
6-C-glycosides (isovitexin) and 6,8-C-diglycosides (vicenin).
However, COX-1 inhibition effect of flavone 6,8-C-diglyco-
sides was better than flavone 6-or 8-C-glycosides (Liu et al.
2012).

Conclusion

Polyphenols show anti-inflammatory effects both in vitro and
in vivo. Several cellular mechanisms are proposed in order to
explain their mode of action. No single mechanism can explain
all of their activities in vivo. The continuous efforts should be
made to develop a new insight into the anti-inflammatory effect
of phytochemicals, and eventually lead to the development of a
new class of anti-inflammatory agents. Dietary intake of flavo-
noids is suggested to prevent and lower the risk of chronic dis-
eases. In this review, we partially discussed the possible
mechanisms by which flavonoids play an important role in the
regulation of inflammatory processes. It would be beneficial
with a more profound characterization of flavonoid pharmaco-
kinetics and a refinement of structure–activity molecular opti-
mization. Regarding the safety, ability, bioavailability, and the
anti-inflammatory effects of flavonoids, they are likely to have
a potential role in preventive and therapeutic roles in chronic
inflammatory conditions. However, more extensive researches
on flavonoids strengthening the network of inflammatory
responses are required in the future.
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ICAM-1 Intercellular adhesion molecule-1
IkB Inhibitor of kB
IKK IkB kinase
IL Interleukin
iNOS Inducible nitric oxide synthase
JAK Janus tyrosine kinase
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