Rural Garden in a Food Desert

Innovative Farming Solutions Ana Chen Reyes - Jacy Gray - Madison Hodges BAEN 480 - Capstone Project

Introduction

South Texas Advancement Resource (STAR) presented us with a project to provide a design for vegetable production on a pilot plot of their 200-acre farm located on the East Slator Ranch.

The pilot plot is a 5-acre development on the farm designated to create a rural garden. The rural garden includes high tunnels and a 4.5-acre traditionally irrigated garden area.

The project consists of three main parts: crop selection, the design of an irrigation system, and the design of the garden layout.

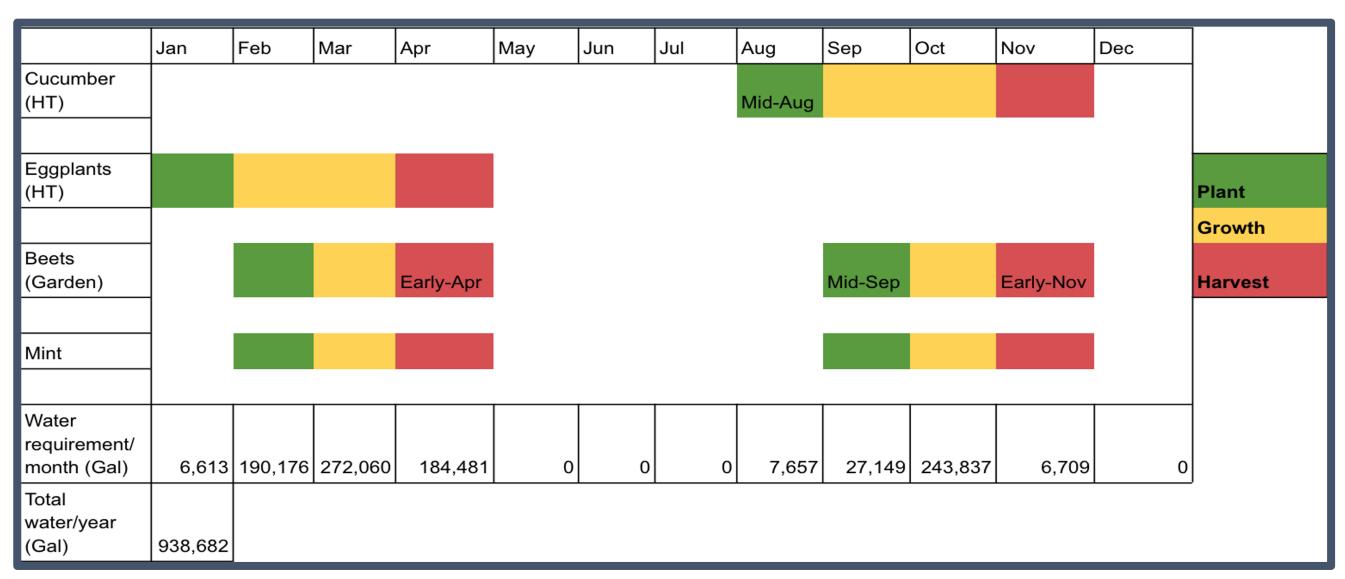
Design Objectives

- Crop Selection: select suitable plants based on soil type and extreme weather conditions (semi-arid region), and create a rotation plan to take advantage of the growing seasons and maximize production.
- Garden Layout: consider wind and weather data to determine the best place to plant the crops, and incorporate the use of high tunnels.
- Irrigation System: create a system that maximizes efficiency and reduces evaporation and runoff.

Costs & Benefits

The project is feasible

Costs & Benefits							
Section	Capital Cost	Operating, Fixed & Variable Costs	Total Costs	Possible Revenue	Balance		
Crop Management	\$221.44	\$36,890.00	\$37,111.44	\$224,981.15	\$188,091.1		
Garden Layout	\$37,178.68	\$0.00	\$37,178.68	\$0.00	\$0.00		
Irrigation	\$22.065.85	\$0.00	\$22,965.85	\$0.00	\$0.00		
System	\$22,965.85						
Total	\$60,365.97	\$97,255.97	\$97,255.97	\$224,981.15	\$127,72		


Assuming 50% of the crops make it to the market with a 50% margin on price

Crop Selection

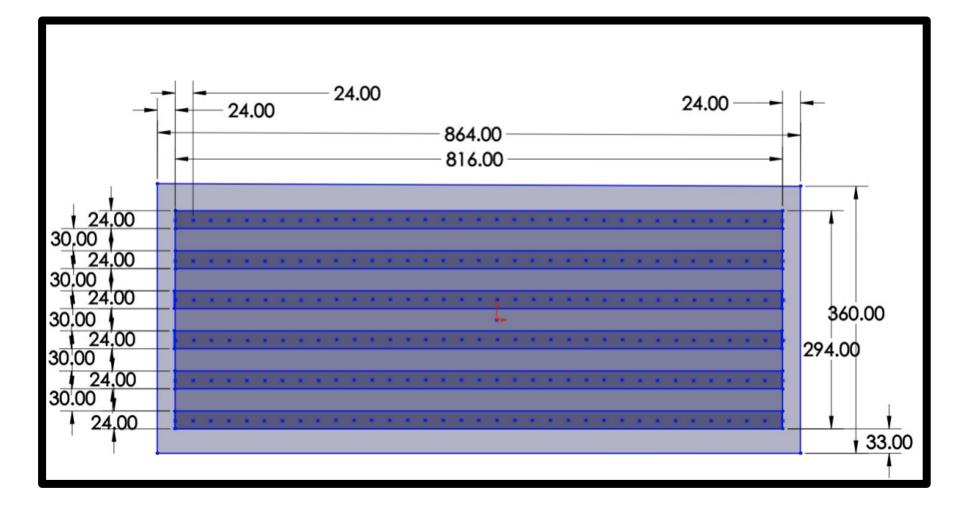
Beets - Mint - Eggplants - Cucumber

Selected based on chance of survival in the area's extreme weather conditions and soil type (USDA Hardiness Zone 9). Crop coefficients ≈ 1 to reduce evapotranspiration loses.

Crop Rotation Plan and Water Requirements

Garden Layout High Tunnel Garden: (4) - 30 ft x 72 ft x 14 ft High Tunnels Traditional Garden: 400 ft x 500 ft

The garden was divided in two sections: high tunnels that will house eggplants or cucumbers depending on the season, and a traditional garden of beets with a companion plant of mint. Companion planting is is beneficial for pollinators, wildlife, soil health, and crop nutrition. The high tunnels are positioned in a single-bay configuration upwind and perpendicular to the wind direction to reduce wind speed and protect the traditional garden from wind erosion up to 480 ft downwind.


Project site: The large green rectangle is the traditional

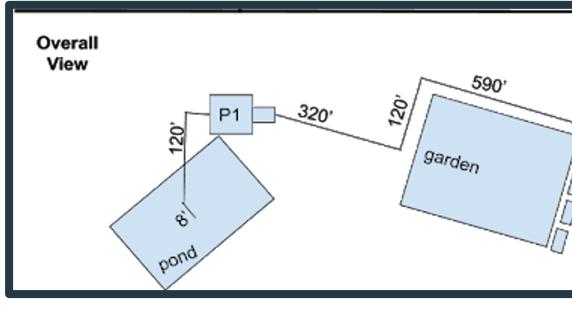
garden, and the red squares are the high tunnel gardens.

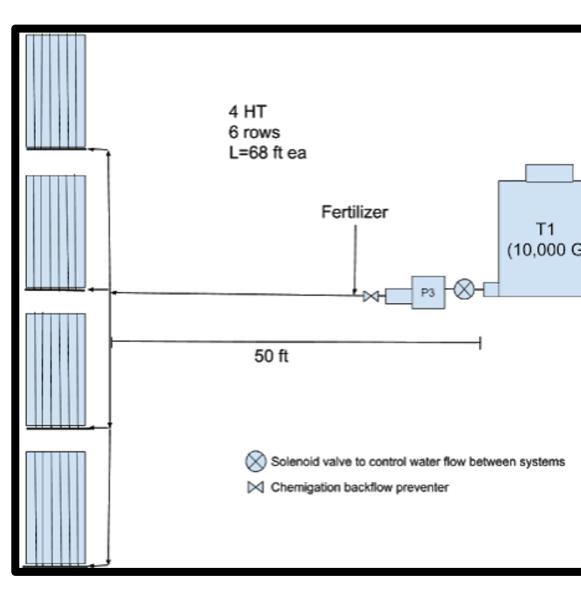
High Tunnel Garden

Produces 210 plants per high tunnel per season

Traditional Garden

Produces 42,656 *beets* and 22,344 *mint plants per season*


Row width: 1 ft


Space between rows: 2 ft

Plant spacing: 1 ft

Irrigation System

Drip Irrigation

TEXAS A&M UNIVERSITY Department of Biological and Agricultural Engineering

Gardens Specifications

Row width: 24 in Space between rows: 30 in Plant spacing: 24 in 6 rows of main crop (eggplant or cucumber) per high tunnel

2:1 intercropping rate

86 rows of beets total, 48 rows of mint total

	Traditional Garden, 134 rows, L = 500 ft	(1) Mainline: L=400', spacing=36", D= (134) Laterals: L=500', emitter spacing=	
200'		 Fertilizer	T1 (10,000 G)
		 P2 8	-
		 100 ft	—–1
		 Solenoid valve to control water f	
7			

- irrigation selected minimize Drip to evaporation and runoff
- Affordable & removable drip tape for design flexibility
- Smart control system to easily make changes to and monitor irrigation method
- Fertigation allows for precise control