ANSC/FSTC 607 Physiology and Biochemistry of Muscle as a Food GLYCOGEN METABOLISM

I. Distribution of glycogen

A. Liver

- 1. Contains up to 6% glycogen.
- 2. Provides glucose for systemic metabolism.

B. Muscle

- 1. Rarely exceeds 1% (very consistent).
- 2. Because of muscle mass, muscle contains three to four times as much glycogen as liver.

II. Overview of glycogen metabolism

III. Glycogen synthesis

A. Reactions

$$G-6-P \xrightarrow{phosphoglucomutase} G-1-P$$

$$G-1-P + UTP \xrightarrow{G-1-P \text{ uridyltransferase}} UDP\text{-glucose} + PP_i$$

$$UDP\text{-glucose} + glycogen \xrightarrow{glycogen \text{ synthase}} UDP + glycogen_{n+1}$$

B. Glycogen branching

- 1. Structure of glycogen
 - a. Backbone consists of α -1,4 glycosidic linkages.
 - b. Branchpoints consist of α -1,6 glycosidic linkages.

2. Mechanism of branching

- a. 11 α -1,4 glycoside residues are added to a chain.
- b. The terminal six residues are transferred to an adjacent chain in a α -1,6 glycosidic linkage.

Figure 20–3. The biosynthesis of glycogen. The mechanism of branching as revealed by adding ¹⁴C-labeled glucose to the diet in the living animal and examining the liver glycogen at further intervals.

Figure 11.3 Branched structure of glycogen, showing α -1,4 and α -1,6 linkages.

C. Regulation of glycogen synthesis

- 1. Phosphorylation of glycogen synthase via epinephrine
 - a. GSK₁ (cAMP-dependent protein kinase) phosphorylates serine residues.
 - b. GSK₂ (phosphorylase kinase) phosphorylates serine residues.
 - c. GSK₃ (glycogen synthase-specific kinase) phosphorylates serine residues.

2. Action of insulin

- a. Stimulates phosphatases.
- b. Provides G-6-P, which provides substrate.

D. Role of glycogenin

- 1. Binds glucose residues
- 2. Serves as primer for glycogen synthesis.
- 3. Catalyzes synthesis of initial glycogen polymer: 8 residues are condensed, after which glycogen synthase extends the molecule.
- 4. Forms the core of the β-particle (55,000 glucose residues).
- 5. Cross-sectional view of glycogen

V. Glycogen degradation

A. cAMP binds with regulatory subunit of protein kinase, frees catalytic subunit.

- B. Catalytic subunits (protein kinase A) phosphorylate phosphorylase kinase.
- C. Phosphorylase kinase phosphorylates glycogen phosphorylase.
- D. Glycogen phosphorylase adds phosphate groups to the 1-carbon of glucosyl residues of glycogen, producing G1P.
- E. This reaction also produces free glucose at branch points.

IV. Regulation of glycogen degradation

- A. Phosphorylase_b activity modulated by:
 - 1. P_i, AMP/IMP activate
 - 2. ATP, G6P inhibit
- B. Phosphorylase_a activity modulated by glucose (inhibits).
- C. Phosphorylase kinase activity regulated by calcium.
 - Concentration required for activation of phosphorylase kinase is lower for the phosphorylated form.
 - 2. Concentration of calcium required for activation of phosphorylase kinase is that which yields half-maximal stimulation of myosin ATPase.

