ANSC/FSTC 607

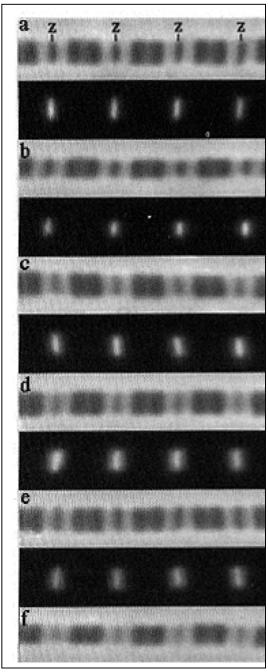
Physiology and Biochemistry of Muscle as a Food POSTMORTEM PROTEOLYSIS, IONIC STRENGTH, AND THE RESOLUTION OF RIGOR

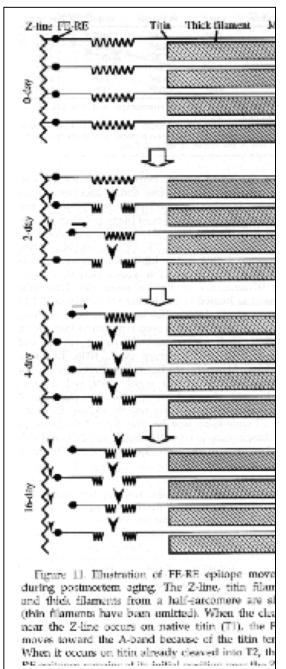
I. Rigor and its resolution

- A. The rigor bond
 - 1. ATP consumed by non-contractile activity of A-M-ATPase and ion pumps.
 - 2. Irreversible crosslinking of actin and myosin occurs.
 - 3. Muscle becomes inextensible (rigor).
- B. Ultrastructural changes
 - 1. Z-Line (most obvious change).
 - a. Extensively degraded in type II.
 - b. Relatively unchanged in type I.
 - c. Both fiber types fragment at Z-disc after aging.
 - d. Loss of Z-line structure due to degradation of desmin.
 - 2. Effects of intracellular calcium.
 - a. Increases activities of proteases.
 - b. May increase rate of glycogenolysis and thereby increase glycolysis.

II. Changes in specific myofibrillar proteins during the aging process

- A. Myofilaments
 - 1. No visible degradation of thick and thin filaments.
 - 2. No detectable breakdown products of thick and thin filaments.
- B. Desmin
 - 1. Degraded during aging.


2. Probably causes fracture at Z-line.


C. Titin

- 1. Thought to contribute to tenderness.
- 2. Extensively disrupted at pH 5.5.
- 3. Disruption occurs early postmortem.
- 4. Degradation of titin at specific sites leads to a broadening of the Z-line.

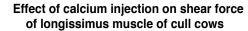
D. Troponin-T

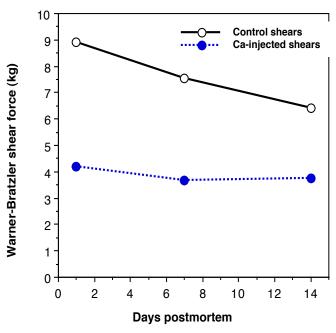
- 1. Degrades to "30 K subunit".
- 2. Extent of degradation is correlated loosely with degree of tenderness

III. Contribution of endogenous proteases to the resolution of rigor

A. Cathepsins

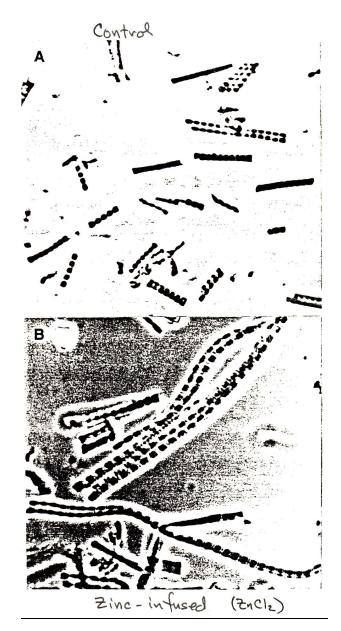
- 1. Located primarily in lysosomes, normally responsible for turnover of proteins.
- 3. Active at acidic pH.
- 4. In vitro, digest many proteins and structures that are not affected during normal aging.
- 5. Primarily involved in the degradation of sarcoplasmic proteins.


B. Calpains (calcium-activated proteases)


- 1. Located primarily at the Z-disc.
- 2. Normal function is inhibited by calpastatin.
- 3. Most active at alkaline pH.
- 4. Require calcium for activity.
 - a. Calpain system probably is involved in myofibril assembly and myogenesis.
 - b μ -calpain requires micromolar concentrations of calcium (as seen in postmortem muscle).
 - c. m-calpain requires millimolar concentrations of calcium.
 - d. Autolysis may reduce their requirements for calcium.
- 5. Activity is strongly depressed by increasing ionic strength.

	In muscle	рН			
Protease	cells?	optimum	Muscle protein digested		
Cathepsin A	Yes	5.0-6.0	Myosin, myoglobin		
Cathepsin B	Yes	3.5-6.0	Actin, myosin, intact myofibrils, collagen		
Cathepsin C	Yes	5.0-6.0	Not determined		
Cathepsin D	Yes	2.5-5.0	Actin, myosin, intact myofibrils		
Cathepsin H	Yes	5.5-6.5	Actin, myosin, α -actinin, troponin-T,		
_			troponin-I, collagen		
Cathepsin J	Yes	5.5-7.5	Unknown		
Cathepsin L	Yes	3.0-6.5	Actin, myosin, α -actinin, troponin-T,		
•			troponin-I		
Calpains	Yes	7.2-8.0	Tropomyosin, troponin-T (to 30 kd protein),		
•			troponin-I, C-protein, desmin, titin (?)		
Multicatalytic			• • • • • • • • • • • • • • • • • • • •		
Proteinase	Yes	9.0-10.0	Unknown		

C. Evidence for calpains


- 1. Calcium infusion accelerates rate of resolution of rigor.
- 2. Zinc infusion (which inhibits calpain activity) stops the aging process.



- 3. Muscle from zinc infused carcasses does not become more tender over time.
 - a. Myofibrills from zinc-infused carcasses do not fragment.
 - b. CDP-inhibitor (calpastatin) activity does not decline over time.
 - c. Desmin and troponin-T do not fragment postmortem.

	Control		ZnCl2-infused	
	dl	d14	dl	d ₁₄
Zn $(\mu g/g)$	8.25		62.48	
Shear Forcea	11.47	5.72	11.25	10.13
MFI	43.63	75.92	39.07	39.67
CDP-Ip	76.93	17.26	115.13	22.78
CDP-IIc	115.19	109.30	126.01	92.88
CDP-inhibitord	125.53	9.96	142.18	187.47
Cathepsin Be	85.17	105.82	93.88	97.57
Cathepsin B+Le	77.62	90.72	92.63	84.09

