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Carbohydrate Metabolism
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C. Entry of fructose into glycolysis

1. Fructose — Phosphorylated by fructokinase to fructose-1-phosphate, then split to
DHAP and glyceraldehyde.

ATP ADP

Fructose A—A Fructose 1-phosphate

Dihydroxyacetone

Glyceraldehyde + phosphate

ATP
na ‘ (
ADP

Glyceraldehyde 3-phosphate

II. Krebs (tricarboxylic acid or citric acid) cycle

A.

Conversion of pyruvate to acetyl CoA

1. Pyruvate is decarboxylated by pyruvate dehydrogenase at the inner mitochondrial
membrane.

2. Coenzyme A is attached by a thioester bond to acetate to form acetyl-CoA
Conversion of pyruvate to oxaloacetate

1. Pyruvate crosses the inner mitochondrial membrane.

2. Pyruvate is carboxylated to oxaloacetate in the mitochondrial matrix.

The cycle

1. Oxaloacetate condenses with acetyl-CoA to initiate the TCA cycle.

2. A net of two carbons is lost during one complete cycle.

3. Primary regulation is at isocitrate dehydrogenase.
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III. Gluconeogenesis
A. Essential enzymes
1. Pyruvate carboxylase (converts pyruvate to oxaloacetate)
2. Phosphoenolpyruvate carboxykinase (PEPCK) (converts oxaloacetate to PEP)
3. Fructose 1,6-diphosphatase (converts fructose 1,6-diphosphate to F-6-P).
4. Glucose-6-phosphates (converts G-6-P to free glucose)
B. Overall pathway
Pyruvate = oxaloacetate > PEP = - Fructose 1,6-diphosphate = F-6-P - G-6-P & Glucose

C. Organs responsible for gluconeogenesis
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A. Liver — produces glucose for the rest of the body

B. Kidney cortex — produces glucose for its own use

IV. Fermentation
A. Products of fermentation
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Carbohydrate Metabolism

All carbohydrates
funnel into pyruvate.
Six-carbon
intermediates are
converted to pyruvate,
which then is used to
make AcCoA or

oxaloacetate.

All VFA are produced
from pyruvate.

VFA production
provides ATP for

bacteria.
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B. TCA cycle in bacteria
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C. Propionate formation in bacteria
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Carbohydrate Metabolism

The TCA cycle is
identical in bacteria and

mitochondria of

eukaryotes.

Eukaryotic mitochondrion

Propionate formation is a
reversal of the entry of
propionate into the TCA
cycle.

The primary substrate for
propionate is lactate, which
is converted to pyruvate =
OAA - malate >
fumarate = succinate 2>
succinyl-CoA >
methylmalonly-CoA >
propionyl-CoA ->
propionate.

(To make glucose, bovine
liver mitochondria partially
reverse the pathway:
Propionate > OAA

Then: OAA - PEP >
glucose
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IV. Glycogen metabolism

A. Liver
1. Contains up to 6% glycogen.
2. Provides glucose for systemic metabolism.

B. Muscle
1. Rarely exceeds 1% (very consistent).
2. Because of muscle mass, muscle contains three to four times as much glycogen as
liver.

C. Overview of glycogen turnover
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D. Glycogen branching
1. Structure of glycogen
a. Backbone consists of a-1,4 glycosidic linkages.

b. Branchpoints consist of a-1,6 glycosidic linkages.
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2. Mechanism of branching
a. 11 a-1,4 glycoside residues are added to a chain.

b. The terminal six residues are transferred to an adjacent chain in a a-1,6 glycosidic

linkage.
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GLYCOGEN ’ BRANCHING
SYNTHASE ENZYME

Fqure 20—3 The biosynthesis of glycogen. The mechanism of branching as revealed by adding "C-labeled glucose to the
diet in the living animal and examining the liver glycogen at further intervals.
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Glycogen synthesis
G-6-P > G-1-P
phosphoglucomutase
G-1-P + UTP » UDP-glucose + PP;
G-1-P uridyltransferase
UDP-glucose + glycogen > UDP + glycogen, + |

glycogen synthase
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Figure 20~2. Uridine diphosphate glucose (UDPGIc).

V. Glycogen degradation

A. Glycogen phosphorylase adds phosphate groups to the 1-carbon of glucosyl residues of
glycogen, producing G1P.

B. This reaction also produces free glucose at branch points.
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Postmortem metabolism in bovine muscle

A. Muscle
glycogen
declined to
about one-
third of
initial

values.

B. Glucose
increases
over 5-fold,
caused by
debranching
of
glycogen.

C. G6P
increases as
F6P
Increases,
which
would
inhibit
hexokinase

activity.
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pH.
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