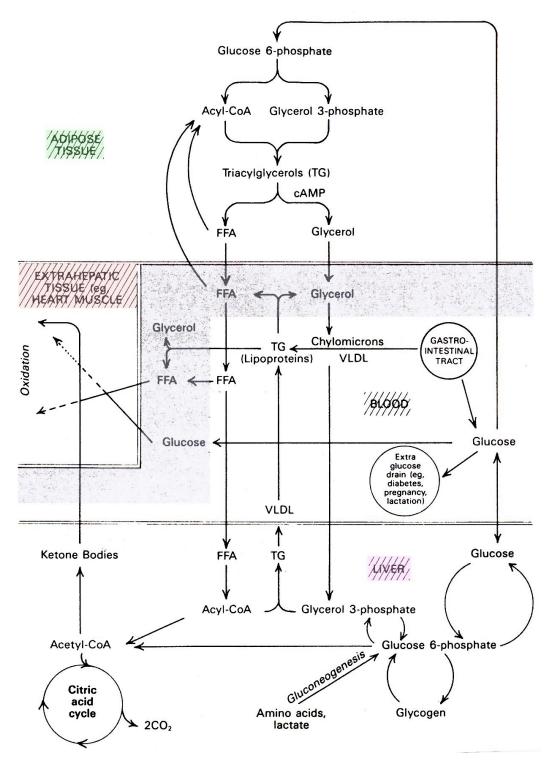
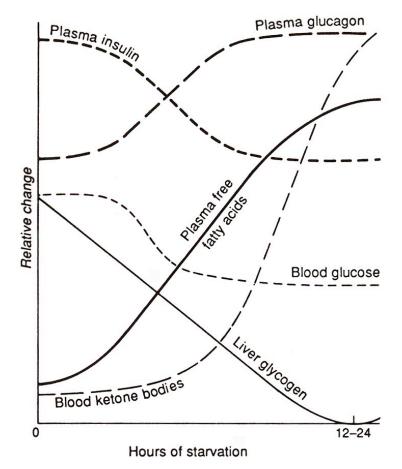

ANSC/NUTR 618 Lipids and Lipid Metabolism Exercise, Starvation, and Lipid Metabolism


I. Overview of adipose tissue metabolism

- A. Fatty acids synthesized in liver and/or adipose tissue, stored as triacylglycerols in adipose tissue.
- B. Stimulation of triacylglycerol hydrolysis (i.e., lipolysis) causes release of fatty acids from adipose tissue to the circulatory system.

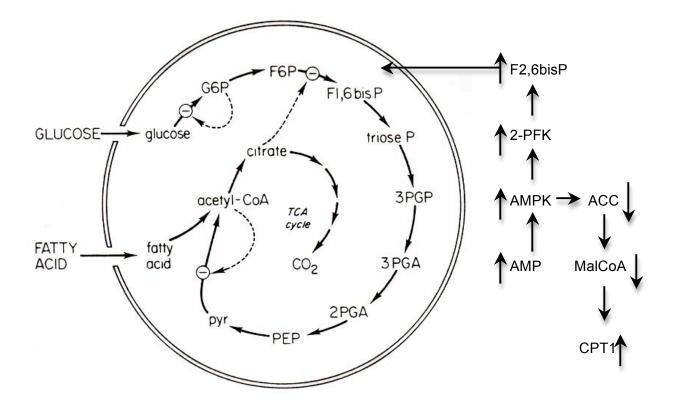
II. Overview of lipid metabolism in liver

- A. Fatty acids converted to triacylglycerols, packaged as VLDL
 - 1. Fatty acids synthesized in liver in most species (except livestock).
 - 2. Fatty acids also obtained from circulatory system (from adipose tissue).
 - 3. VLDL transports fatty acids (as triacylglycerols) back to other tissues.
- B. Excess of fatty acids leads to ketone body formation.
 - Conversion of fatty acids to acetyl-CoA exceeds ability of liver to oxidize the acetyl-CoA.
 - 2. Excess acetyl-CoA is used to synthesize ketone bodies.
 - 3. Glycerol (from adipose tissue) is converted to glucose in liver.
 - 4. Fatty acids, ketone bodies and glucose are used for energy by muscle.



III. Effects of starvation and exercise on substrate utilization by muscle

- A. Blood glucose decreases.
 - 1. Liver glycogen is depleted.


2. In response to decrease in blood glucose, insulin decreases and glucagon release from pancreas is increased.

- B. Nonesterified fatty acids increase in blood.
 - 1. Epinephrine is released:
 - a. Stimulates hormone sensitive lipase, fatty acid and glycerol release.
 - b. Inhibits triglyceride synthesis.
 - 2. Insulin is not available for:
 - a. Inhibition of hormone sensitive lipase.
 - b. Increased uptake of glucose (\rightarrow G-3-P).

IV. Glucose: fatty acid cycle

- A. Ketone bodies and muscle metabolism.
 - 1. Ketone bodies are water soluble, and are activated in mitochondria where they are metabolized (very fast).
 - 2. The metabolism of ketone bodies and fatty acids elevates mitochondrial acetyl-CoA:
 - a. Elevates mitochondrial citrate.
 - b. Citrate exits mitochondria, elevates cytosolic citrate.
 - 3. Citrate and fatty acyl-CoAs inhibit 6-PFK.
 - a. Inhibition at 6-PFK causes increase of F-6-P and G-6-P.
 - b. Elevation of G-6-P inhibits hexokinase, spares glucose for other tissues.

- B. AMP-dependent protein kinase
 - 1. AMP-dependent protein kinase normally stimulates glycolysis.

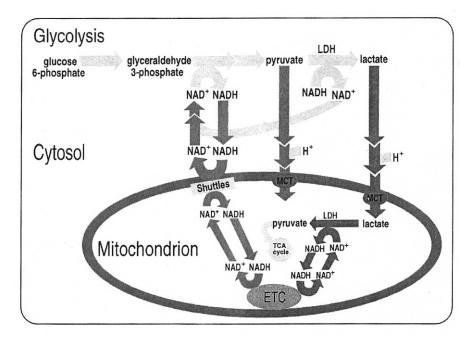
a. Increases in AMP concentrations activate the protein kinase.

b. Active AMPK induces the expression of 6-phosphofructose-2-kinase, which causes the production of fructose-2,6-bisphosphate, which strongly stimulates 6-PFK activity.

2. AMPK and fatty acid oxidation

a. AMPK phosphorylates acetyl-CoA carboxylase, thereby decreasing ACC activity.b. Inhibition of ACC depresses malonyl-CoA concentrations, removing inhibition of CPT1.

c. This promotes fatty acid oxidation.


Effect of 1 h swimming on metabolite concentrations in plasma and soleus muscles for 48 h-starved rats Values are means \pm S.E.M. for six to 20 observations per group. Rats swam for 1 h with a weight (4% of body wt.) tied to their tails in water maintained at 33-35° C. They were anaesthetized immediately after exercise. Plasma metabolites are expressed in µmol/ml and solus metabolites in nmol/g, except for ATP and phosphocreatine, which are in µmol/g. *Value significantly different from that of the resting group, at *P*, 0.05.

	Rest	Post-exercise
Plasma, μmol/mL		
Glucose	5.2 ± 0.4	$4.4 \pm 0.4*$
Lactate	1.0 ± 0.2	$2.6 \pm 0.4*$
Non-esterified fatty acids	0.37 ± 0.05	$1.89 \pm 0.12*$
β-Hydroxybutyrate	0.74 ± 0.10	$1.57 \pm 0.10^*$
Soleus intermediates, nmol/g		
Glycogen	18 ± 2	17 ± 3
Citrate	231 ± 21	$440 \pm 20*$
Glucose 6-phosphate	90 ± 20	$287 \pm 50*$
Fluctose 6-phosphate	25 ± 5	$64 \pm 11^*$
Fructose 1,6-bisphosphate	25 ± 4	15 ± 4
High energy phosphates, μmol/g		
ATP, μmol/g	3.1 ± 0.1	3.5 ± 0.1
ADP, µmol/g	1.0 ± 0.05	0.2 ± 0.02
AMP, μmol/g	0.1 ± 0.01	0.5 ± 0.01
Phosphocreatine, µmol/g	8.8 ± 0.9	10.3 ± 1.0

C. Lactate metabolism and inhibition of PFK.

1. Lactate enters mitochondria via the monocarboxylic shuttle.

- 2. Lactate is converted to pyruvate via mitochondrial LDH and enters the TCA cycle.
- 3. The accumulation of NADH inhibits ICDH, and increases citrate levels.

