ANSC/FSTC 607 Physiology & Biochemistry of Muscle as a Food Muscle Ultrastructure

II. Myofilaments

- A. Thick filament
 - 1. Dimensions
 - a. Length = $1.0 1.6 \,\mu m$
 - b. Diameter = 10 12 nm
 - c. $MW = 160 \times 10^6$ daltons. Approx. 200 myosin molecules/thick filament

- B. Thin filament
 - 1. Dimensions
 - a. Length = $1.0 \,\mu m$
 - b. Diameter = 5 7 nm
 - c. MW = 10×10^6 daltons
 - 2. Configuration
 - a. There are 150 200 globular (G)-actin molecules per filamentous (F)-actin.
 - b. Two F-actins per thin filament.
 - c. 13 G-actin molecules per α -helical turn.

Thin filament

C. Proteolytic fragments of myosin molecule (MW 470 kd) produced with *trypsin*.

- 1. Light meromyosin
 - a. "Tail" only
 - b. MW = 140 kD
- 2. Heavy meromyosin
 - a. "Head" plus remainder of "tail"
 - b. MW = 340 kD
- D. Subfragments produced by cleavage with

papain.

- 1. HMM-1 (head only; S1)
- 2. HMM-2 (tail only)

III. Contractile proteins

- A. Myosin heavy chain (MHC; 2/molecule)
 - 1. MW $\approx 200 \text{ kD}$
 - 2. Most abundant: 43% of total myofibrillar protein
 - 3. Myosin light chains (MLC; 4/molecule)
 - a. MWs are variable because isoforms exist in fast- and slow-twitch muscles.
 - b. MLC-1 MW \approx 21 kD (alkali light chain)
 - c. MLC-3 MW \approx 17 kD (another alkali light chain)
 - d. MLC-2 MW \approx 18 kD (regulatory light chain)

B. G-actin

- 1. 22% of total myofibrillar proteins
- 2. MW \approx 43 kD
- 3. Bound by ionic and hydrophobic bonds to form F-actin.
- 4. Each G-actin has polarity, i.e., can arrange head-to-tail.

IV. Regulatory proteins

- A. Tropomyosin
 - 1. 5% of total myofibrillar proteins
 - 2. MW = 71 kD (dimer: $Trp_{\alpha} = 33$ kD; $Trp_{\beta} = 37$ kD)
 - 3. In series: each Trp molecule spans 7 G-actins.
 - 4. One tropomyosin series for each F-actin.
- B. Troponins (5% of total myofibrillar proteins)
 - 1. Troponin-I
 - a. MW = 21 kD
 - b. Known as the inhibitory troponin.
 - c. Troponin-I binds to actin to inhibit interaction with myosin.
 - 2. Troponin-T
 - a. MW = 37 kD
 - b. Troponin T binds to tropomyosin.
 - 3. Troponin-C
 - a. MW = 15 kD
 - b. Troponin C binds Ca⁺⁺.
- C. Tropomodulin
 - 1. < 1% of total myofibrillar proteins
 - 2. MW = 41 kD
 - 3. Located at free end of actin.
 - 4. Tropomodulin restricts the growth of F-actin.
- D. Cap Z
 - 1. MW = 66 kD
 - 2. Cap Z binds to F-actin and inhibits G-actin polymerization.

V. Cytoskeletal proteins

- A. Titin (Connectin)
 - 1. 10% of total myofibrillar proteins
 - 2. MW = $3.7 \times 10^3 \text{ kD}$
 - 3. Titin extends in each half sarcomere from the M line to the Z disk.
 - a. The portion of titin in the A band is inelastic.

- b. The portion of titin in the I band is elastic.
- c. Titin is bound outside the shaft of thick filament.
- 4. Titin influences elasticity of the sarcomere.
- B. Nebulin
 - 1. 4% of total myofibrillar proteins
 - 2. MW = 773 kD
 - 3. Extends along the entire length of the thin filament from A band to Z disk.
 - 2. Helps to align thin filaments during myofibril formation.
 - 3. May also anchor thin filaments to Z disk.
- C. C-Protein
 - 1. 2% of total myofibrillar protein
 - 2. MW = 130 kD
 - 3. Clamps around thick filament (like barrel hoop).
 - a. May inhibit ATPase activity.
 - b. 40 C-protein molecules/thick filament
 - c. 7 C-protein bands on each side of the H-zone
- D. M-Line proteins (< 2% of total myofibrillar proteins)
 - 1. M protein and myomesin
 - a. Project from thick filaments at M-line.
 - b. Stabilize central portion of thick filaments.
 - 2. Metabolic proteins
 - a. Glycogen debranching enzyme
 - b. Creatine kinase
 - c. Myomesin -- connects adjacent thick filaments.

VI. Z-Disk proteins

- A. α-Actinin
 - 1. 2% of total myofibrillar

proteins.

2. MW = exists as dimer of 190

kD.

- 3. Anchors thin filaments.
- B. Desmin
 - 1. MW = 212 kD
 - 2. Functions to connect adjacent myofibrils.
 - 3. Radiates from Z-line to

adjacent Z-line.

- C. Other proteins of the Z-disk
 - 1. Filamen
 - 2. Synemin
 - 3. Vinculin
 - 4. CapZ

VII. Intermyofibrillar proteins

- A. Desmin
 - 1. Desmin filaments can be seen as connections between adjacent Z-lines.
 - 2. Desmin filaments keep sarcomeres in register.
- B. Costameres
 - 1. Costameres attach sarcomeres to the sarcolemma.
 - 2. Transmit force of contraction from the myofibrils to the body of the muscle.

Fig. 5. Transmission electron micrograph of restrained bovine sternomandibularis muscle placed in 3% glutaraldehyde fixative for 24 hours. Intermyofibrillar bridges (I) join adjacent myofibrils at the Z-lines (Z). The sarcomeres (SA) are extremely short, with Z-lines almost touching each edge of the A-bands (A). The M-line (M) is easily discerned. Filaments (\hat{F}) join adjacent myofibrils at the A-band region.

Diagram of some proteins related to be in the Z-bands of mature myofibrils. The Z-bands of the mature myofibrils are attached via costameric proteins to the membranes of the muscle cells.