
ANSC/FSTC 607 Physiology and Biochemistry of Muscle as a Food CONTROL REACTIONS AND ENZYME KINETICS

I. Identification of control reactions in a pathway

- A. Where is the regulatory reaction?
 - 1. At unidirectional reactions ($A \rightarrow B, B \rightarrow, B \rightarrow G, B \rightarrow H$).
 - 2. Early in the sequence or pathway ($\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}$).
 - 3. At branch points ($\mathbf{B} \rightarrow \mathbf{G}, \mathbf{B} \rightarrow \mathbf{H}$).
 - 4. At steps where the reverse reaction is catalyzed by a different enzyme ($\mathbf{B} \leftarrow \rightarrow \mathbf{C}$).
 - B. Kinetic considerations
 - 1. Maximal reaction rate (i.e., number of binding sites), Vmax
 - 2. Affinity of the enzyme for its substrate, K_m (or $K_{s.5}$)
 - 3. Equilibrium constants and mass action ratios
 - 4. Allosteric activators and inhibitors
 - C. Possible control reactions and respective controls

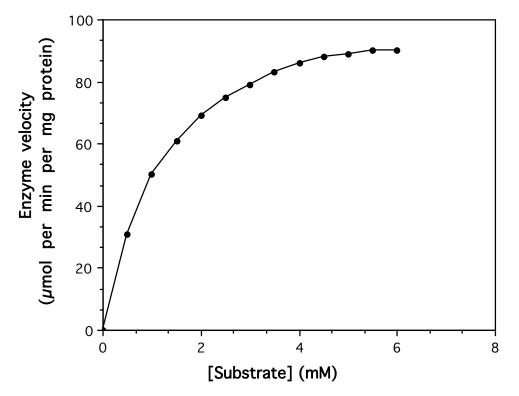
1. Hexokinase ($\mathbf{A} \rightarrow \mathbf{B}$)	G-6-P (-)
2. Glycogen synthetase ($\mathbf{B} \rightarrow \mathbf{G}$)	G-6-P (+)
3. Glycogen phosphorylase	AMP, Ca ⁺⁺ (+), ATP (-)
4. 6-Phosphofructokinase	ATP + citrate (–)), overcome by F-6-P, AMP, P _i ,
	6-PG, F-2,6-P ₂ (+)
5. Glyceraldehyde-3-P-DH	NAD/NADH ratio
6. Pyruvate kinase	F-1,6-P ₂ , 6-PG, F-2,6- P ₂ (+), ATP (-)

D. Equilibrium constants (K_{eq}) and Mass Action Ratio (MAR)

1. K_{eq} is measured under set conditions of concentration, temperature, and pressure.

2. MAR is calculated from actual intracellular concentrations of reactants and products.

e.g., F-6-P + ATP \rightarrow F-1,6-P₂ + ADP

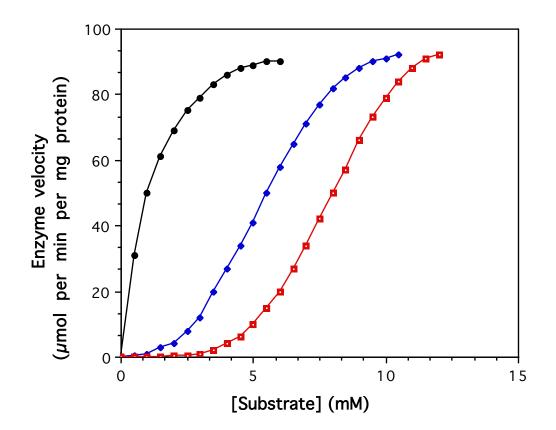

 $\mathbf{K}_{eq} = \underbrace{[\mathbf{F-1,6-P_2}] \ x \ [\mathbf{ADP}]}_{[\mathbf{F-6-P}] \ x \ [\mathbf{ATP}]} \qquad under \ set \ conditions$

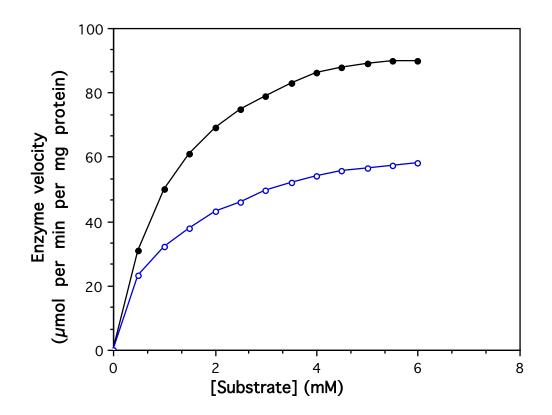
and $MAR = F-1, 6-P_2 x [ADP]$ actual cellular conditions [F-6-P] x [ATP]

Enzyme Activities Keq MAR Hexokinase 1.5 4,000 0.08 176 Phosphoglucoisomerase 0.4 0.24 6-Phosphofructokinase 56 1,000 0.03 Aldolase 78 0.0001 0.00001 Triosephosphate isomerase 2,650 0.04 0.24 9 Glyceraldehyde-3-phosphate dehydrogenase 440/169 1,000 plus phosphoglycerate kinase Phosphoglycerate mutase 100 0.1 0.12 158 3.5 1.4 Enolase 387 2-20,000 40 Pyruvate kinase

II. Enzyme kinetics

- A. Reaction rates
 - 1. Zero order
 - 2. First order
 - 3. Mixed order
- B. Effect of substrate concentration
 - 1. Michaelis-Menton hypothesis
 - 2. Significance of K_m
 - 3. Relationship of K_m, substrate concentration, and reaction order




III. Other kinetics

- A. Sigmoidal kinetics -- K_s
 - 1. Indicates cooperativity
 - 2. Can be caused by allosteric effectors, pH, salts
- B. Allosteric effectors
 - 1. Inhibitors
 - 2. Activators
 - 3. Allows decision making between pathways.

IV. Regulation of cellular processes

- A. Change in amount of enzyme
 - 1. Adaptive vs constuitive
 - 2. Time required -- *slow*
- B. Phosphorylation of enzymes
 - 1. Glycogen metabolism
 - 2. Lipid metabolism
 - 3. Fast

