ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Triacylglycerol Composition

I. Triacylglycerol composition and structure

- A. Dietary lipids
 - 1. Animal lipids
 - a. Typically higher in saturated fatty acids than plant oils.
 - b. Composition is influenced by the combination of endogenous synthesis and dietary fatty acids.

Table 3.1 The fatty acid composition of some animal storage fats* (g per 100 g total fatty acids)

	4:0-	14:0	16:0	16:1	18:0	18:1	18:2	20:1+	20:5	22:6	tota
	12:0						n-6	22:1	n-3	n-3	
Adipose tissue	vi 9 (1)						31 2 1	1 1 4			
Cow		3	26	9	8	45	2				93
Human (1)		2	19	7	3	48	13				92
Human (2)		2	20	4	5	39	24				94
Lamb		3	21	4	20	41	5				94
Pig (1)		1	29	3	14	43	9				99
Pig (2)		1	21	3	12	46	16				99
Poultry		1	27	9	7	45	11				94
Milk											
Cow	10	12	26	3	11	29	2				93
Goat	20	11	26	3	10	26	2				98
Egg yolk											
Hen			29	4	9	43	11				96
Fish oils											
Cod (liver)		6	8	10	3	17	3	25	10	11	93
Mackerel (flesh)		8	16	9	2	13	1	26	8	8	91
Herring (flesh)		9	15	8	1	17	1	39	3	3	96
Sardine (flesh)		8	18	10	1	13	1	7	18	9	85

Fatty acid composition of Atlantic salmon, ground beef, and bovine and human plasma											
	14:0	16:0	16:1	18:0	18:1	18:2	18:3	20:5	22:6 1	8:1 <i>trans</i>	
Atlantic salmon	3.2	14	5	3	22	1	0.7	4.5	12.2		
Ground beef											
Grass-fed	0.5	28	2	15	16	1.5	0.6	0.3	0.05	11.6	
Grain-fed	2.8	24	3	16	37	2.2	0.3	0.02	0.01	4.4	
Bovine plasma											
Grass/grain-fed	1.5	13		18	13	34	4.5	1			
Grass/grain/sunflowe	r oil1.3	3 12		19	14	36	4.1	0.9			
Human plasma											
Older men	0.8	24	2	8	22	30	0.7	0.5	0.4	0.2	
Young men	0.9	23	1	10	20	27	1.4	0.3	0.9	0.3	
Women	0.4	21	1	9	21	37	0.5	0.2	0.1	0.5	

2. Plant lipids

- a. Contain n-6 and n-3 fatty acids, but not eicosapentaenoic acid (20:5n-3) or docosahexaenoic acid (22:6n-3).
 - b. Stearic acid typically is very low except in cocoa butter.
 - c. Oleic acid can be abundant.
 - d. trans-Fatty acids are not synthesized in plants.

Table 3.2 The fatty acid composition of some vegetable oils* (g per 100 g of total fatty acids)

	8:0	10:0	12:0	14:0	16:0	18:0	18:1 n-9	18:2 <i>n</i> -6	18:3 <i>n-</i> 3	20:1+ 22:1	total
A. Major edible oil crops) 										
Cocoa butter					26	34	35	3			98
Coconut (3.4)	8	7	48	18	9	3	6	2			99
Corn (1.9)					13	3	31	52	1		100
Cottonseed (4.0)				1	24	3	19	53			100
Groundnut ^a (4.2)					13	3	37	41		2	96
Olive (2.7)					10	2	78	7	1		98
Palm (17.6)				1	43	4	41	10			99
Palm kernel (2.2)	4	4	45	18	9	3	15	2			100
Rape (Canola) (11.8)					4	2	56	26	10	2	100
Sesame (0.8)					9	6	38	45	1	1	100
Soybean (20.8)					11	4	22	53	8	1	99
Sunflower (9.3)					6	6	18	69			99

B. Structure of acylglycerols

- 1. Fatty acids are distributed within triacylglycerols (TAG) with some specificity.
- 2. This specificity depends on both the species and the tissue site within the species in which the TAG was synthesized.
- 3. The stereospecific number (sn) indicates the position of the fatty acid on the glycerol backbone.

Triacylglycerols
$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

C. Distributions of fatty acids in dietary fats

- 1. Pig fat and human milk
 - a. 16:0 at sn-2
 - b. 18:1 at sn-1/3 positions
 - c. 18:2 at sn-1/3
- 2. Human, beef, lamb, and chicken fat
 - a. 16:0 at sn-1 (> 40%)
 - b. 18:1 at sn-2 positions (> 50%)
 - c. 18:2 primarily at sn-3, but variable
- 3. Cow milk
 - a. 14:0 and 16:0 at sn-1 and sn-2
 - b. 4:0 and 6:0 at sn-3
 - c. 18:1 at sn-1/3
 - d. 18:2 at sn-2

 TABLE 4
 Positional Distribution of Individual Fatty Acids in Triacylglycerols of Some Natural Fats

							Fatty acid (mol%)						
Source	Position	4:0	6:0	8:0	10:0	12:0	14:0	16:0	18:0	18:1	18:2	18:3	
Cow's milk	1	5	3	1	3	3	11	36	15	21	1		
	2	3	5	2	6	6	20	33	6	14	3		
	3	43	11	2	4	3	7	10	4	15	0.5		
Coconut	1		1	4	4	39	29	16	3	4			
	2		0.3	2	5	78	8	1	0.5	3	2		
	3		3	32	13	38	8	1	0.5	3	2		
Cocoa butter	1							34	50	12	1		
	2							2	2	87	9		
	3							37	53	9			
Corn	1							18	3	28	50		
	2							2		27	70		
	3							14	31	52	1		
Soybean	1							14	6	23	48	9	
	2							1		22	70	7	
	3							13	6	28	45	8	
Olive	1							13	3	72	10	0.6	
	2							1		83	14	0.8	
	3							17	4	74	5	1	
Peanut	1							14	5	59	19		
	2							2		59	39		
	3							11	5	57	10		
Beef (depot)	1						4	41	17	20	4	1	
	2						9	17	9	41	5	1	
	3						1	22	24	37	5	1	
Pig (outer back)	1						1	10	30	51	6	(6	
	2						4	72	2	13	3		
	3								7	73	18		

D. Enrichment of fatty acids at sn-positions in bovine adipose tissue

- 1. 18:0 is increased at sn-1/3 in long-fed Australian cattle.
- 2. 18:1 is increased at sn-1 in long-fed Japanese cattle.
- 3. 16:0 and 18:1 trans-fatty acids are highest in the sn-1/3 positions.

Total fatty and sn-fatty acids in adipose tissue of cattle fed grains for long periods of time

	14:0	16:0	16:1	18:0	18:1	18:2	18:3	18:1-trans
Total								
U.S. cattle	1.6	24	5	11	49	1.8	0.4	2.5
Japanese cattle	1.3	24	5	8	53	2.0	0.2	0.7
Australian cattle	1.5	24	2	26	40	1.6	0.5	2.3
sn-2								
U.S. cattle	1.6	22	5	10	52	1.5	0.1	3.0
Japanese cattle	2.0	15	6	8	62	3.3	0.2	0.4
Australian cattle	2.0	20	2	21	50	2.1	0	1.9
Average sn-1/3								
U.S. cattle	1.6	33	4	13	35	1.9	0.5	4.5
Japanese cattle	0	42	4	8	35	0	0.3	1.1
Australian cattle	0.4	33	1	36	20	0.6	1.5	3.1

E. Heterogeneity of triacylglycerols

- 1. TAG can exist in pure form (i.e., containing only one fatty acid).
- 2. More often, TAG exist as combinations of fatty acids.
- 3. TAG can contain three saturated fatty acids (SSS), three monounsaturated fatty acids (MMM), three polyunsaturated fatty acids (PPP; quite rare in animal fat), or some combination of fatty acids.

