ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Adipose Tissue Differentiation

I. Definitions

A. Hyperplasia

- 1. Increase in cell number.
- 2. Presumes divisions of cells (mitotic for most cell types).
- 3. Prenatal or postnatal.

B. Hypertrophy

- 1. Increase in cell size.
- 2. Biosynthetic processes proceed at faster rate than degradative processes.
- 3. Primarily postnatal.

3T3-L1 preadipocytes at confluence. No lipid filling has yet occurred.

3T3-L1 adipocytes after 6 d of differentiation. Dark spots = lipid droplets.

II. Embryonic development

A. Zygote

- 1. Pronuclei are separate immediately after fertilization.
- 2. Fuse to form single nucleus.

B. Morula

- 1. Contains blastomeres (divided cells).
- 2. Blastomeres are totipotential until approximately the 32-cell stage.

C. Blastocyst

- 1. Hollow sphere (cavity = blastocoele)
- 2. Trophoblast (outer layer of cells)
- 3. Inner cell mass (source of germ cell lines)

D. Embryo -- early

- 1. Dorsal (ectoderm)
- 2. Ventral (endoderm)
- 3. Primitive streak (mesoderm → connective tissues, muscle)

E. Embryo -- late

- 1. Visible notochord
- 2. Somites (from the mesoderm)
 - a. Dermatome → mesenchymal cells (connective tissues)

Collagen-secreting chondroblasts Preadipocytes

Stromal vascular cells

- b. Sclerotome → source of bone
- c. Myotome → muscle

Maturation of a somite into the dermatome, myotome, and sclerotome.

Migration of mesodermal cells and formation of a limb bud.

III. Early postnatal development of adipose tissue

A. Origin of adipocytes

- 1. Mesoderm
- 2. Mesenchyme
- 3. Some cell types will become brown adipocytes.

B. Differentiation

- 1. Fibroblasts
 - a. Proliferative
 - b. No adipocyte-specific gene expression.
- 2. Adipoblasts (preadipocytes)

- a. Proliferative
- b. Distinguished by adipocyte-specific gene expression and some lipid filling.
- 3. Mature adipocytes
 - a. Extensive lipid filling.
 - b. No further division.

IV. Development of adipose tissue in mature animals

A. Hypertrophy

- 1. Important in young animals.
- Contributes little to adipose tissue mass in mature animals.
- B. Hyperplasia
- 1. Only in preadipocytes
- 2. Increases total adipocyte number.
- C. Recruitment
 - Differentiation of quiescent adipoblasts
- "Apparent" increase in adipocyte number

V. Sources of new adipocytes in subcutaneous adipose tissue

A. Stromal-vascular tissue (mesenchymal tissue)

- 1. Can be separated from mature adipocytes by collagenase treatment.
 - a. Mature (lipid-filled) adipocytes are discarded.
 - b. SV cells (containing preadipocytes) are plated.
- 2. After plating, SV cells rapidly divide.
- 3. Upon confluence, SV cells (preadipocytes?) begin to differentiate.
- 4. Cells convert to multilocular adipocytes under appropriate culture conditions.

Figure 15.5. A schematic representation of the morphological growth characteristics of both human and rat adipocyte precursor cell strains as a function of culture conditions (see text)

Hanwoo preadipocytes at confluence (A & B) and after 10-20 days in differentiation media (C & D). B & D are oil-red O stained. Chung et al.

B. Delipidation of mature adipocytes

- 1. During delipidation, no hyperplasia.
- 2. After extensive delipidation, normal exponential growth.

Time course of proliferation and glucose metabolism in preadipocytes after delipidation.

Deplipidation of human adipocytes in culture.

C. Processes of lipid filling and delipidation

- 1. Once thought that differentiated cells could not divide.
- 2. Now known that proliferation can occur after lipid filling begins.

Figure 15.13. Proposed maturation and delipidation of adipocytes