ANSC/NUTR 618 Lipids and Lipid Metabolism General Chemistry of Fatty Acids

I. Common Saturated Fatty Acids

NO. OF CARBONS	COMMON NAME	GENEVA NAME	STRUCTURE
4	Butyric	Tetranoic	CH ₃ (CH ₂) ₂ COOH
6	Caproic	Hexanoic	$CH_3(CH_2)_4COOH$
8	Caprylic	Octanoic	$CH_3(CH_2)_6COOH$
10	Capric	Decanoic	$CH_3(CH_2)_8COOH$
12	Lauric	Dodecanoic	$CH_3(CH_2)_{10}COOH$
14	Myristic	Tetradecanoic	$CH_3(CH_2)_{12}COOH$
16	Palmitic	Hexadecanoic	$CH_3(CH_2)_{14}COOH$
18	Stearic	Octadecanoic	$CH_3(CH_2)_{16}COOH$
20	Arachidic	Eicosanoic	$CH_3(CH_2)_{18}COOH$

(You will need to know the common names for fatty acids.)

II. Common Dietary Unsaturated Fatty Acids

One Double Bond - monounsaturated

16C **Palmitoleic acid** *cis-*9-Hexadecenoic

CH₃(CH₂)₅CH=CH(CH₂)₇COOH

18C **Oleic acid** *cis-9*-Octadecenoic

CH₃(CH₂)₇CH=CH(CH₂)₇COOH

Two cis-Double Bonds - polyunsaturated

18C **Linoleic acid** *cis-9,*12-Octadecadienoic

CH₃(CH₂)₄CH=CH-CH₂-CH=CH(CH₂)₇COOH

Two Conjugated Double Bonds

18C **Conjugated linoleic acid** *cis-9,trans-*11-Octadecadienoic

CH₃(CH₂)₄CH₂-CH=CH-CH=CH(CH₂)₇COOH

Three Double Bonds

18C **α-Linolenic acid** *cis-9,12,15-*Octadecatrienoic

CH₃-CH₂-CH=CH-CH₂-CH=CH(CH₂),COOH

Some important structures

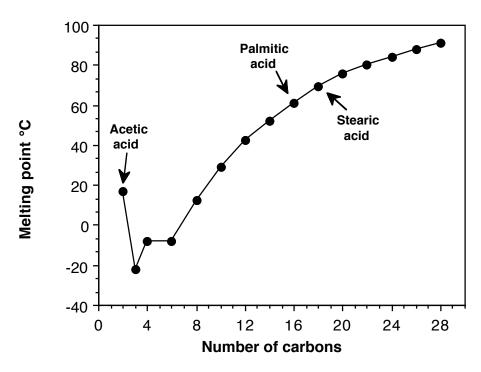
HOOC-CH₂-(CH₂)_n-CH₂-CH₃

Palmitic acid (16:0)

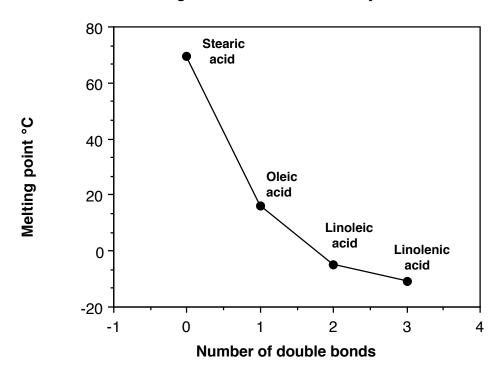
Oleic acid (18:1n-9 or 18:1cis-9)

Docosahexanoic acid (22:6*n*-3 or 22:6*cis*-4, 7, 10, 13, 16, 19)

trans-10, cis-12 conjugated linoleic acid (A), cis-9, trans-11 conjugated linoleic acid (B), and cis-9, cis-12 linoleic acid (C).

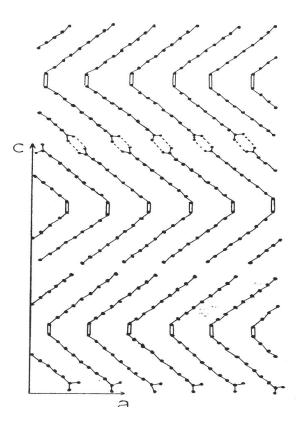

III. Melting points

- A. Increased chain length
 - 1. Acetic acid (smallest fatty acid) is anomalous because of polarity.
 - 2. With increased chain length (> 3 carbons), melting point increases.


B. Increased double bonds

- 1. As *cis*-double bonds increase, melting point decreases.
- 2. *trans*-double bonds do not cause a kink in the molecule, so have less effect on melting point.

Melting Points of Saturated Fatty Acids



Melting Points of 18-Carbon Fatty Acids

C. Fatty Acid Crystals

- 1. Crystals of oleic acid (at right) have a highly ordered structure.
- 2. The cis double bonds are tilted in opposite directions to the plane of the molecules.
- 3. This configuration provides maximum van der Waals forces.

